The Close Binary Fraction:
A Bayesian Analysisof SDSSM Dwarf Spectra
ABSTRACT

| have used cross-correlation to determine radial velegifrom 145,888 individual spectra of a
magnitude-limited sample of 39,543 M dwarfs observed bySlloan Digital Sky Survey (SDSS). |
then used Bayesian analysis and Monte Carlo simulationsteymine the close binary fraction of
M dwarfs. While previous results on the close binary fracticere based upon very small samples
and thus were unable to provide very precise values, thdtsdbat | present here are based on far
larger samples, and are thus more precise and fit to serve@ssgraint on proposed theories of
star formation. After adjusting for my detection efficientyound the frequency of binary stars
with @ < 0.4 AU to be 3.075%. | also demonstrated that the close binary fraction, liletttal

binary fraction, decreases with decreasing primary mass.



The Close Binary Fraction:
A Bayesian Analysisof SDSSM Dwarf Spectra

1 Introduction

A complete theory of star formation remains to be found ana major open problem in astro-
physics. Many theories have been proposed to explain stavatmn, but any successful theory
must make predictions which agree with all of the relevargspations. In particular, in the spe-
cial case of binary stars, star systems which consist of teus ®rbiting their center of mass, the
theory must yield conclusions which match the observaticegults. It follows that the frequency
of binary stars determined by the theory must match thosraéted observationally or the theory
can not possibly be correct. Thus, the observationallyrdeted binary fraction can be used as a
constraint on proposed theories of star formation.

Various investigations have examined the binary frequémgifferent spectral classes. Duquen-
noy & Mayor (1991) found that G stars have a binary frequerfcy®7%. Fischer & Marcy (1992)
conducted a similar survey of early-M stars and found thay thave a binary frequency of 42%
+ 9%. As an intermediary result, based upon a sample of 62 @hjgey also found that the fre-
qguency of binaries witl).04 AU < a < 0.4 AU to be ~1.8%. More recently, Allen (2007) found
that ultracool dwarfs (M6 and later) have a binary frequeot20% + 4%. However, a common
feature of all of these surveys is that they include a re¢dyigmall number of stars. Dugquennoy
& Mayor (1991) included 164 stars, Fischer & Marcy (1992)luated 179 stars, and Allen (2007)
included 361 stars. A survey which included a larger numbetars would be able to give more
precise values for the binary frequency than the surveysidnze been conducted so far.

In this paper, | shall address the close binary fractionamthan the total binary fraction. For
this purpose, | have carried out an extensive investigaifad dwarfs (spectral classes MO-L0)
observed by the Sloan Digital Sky Survey (SDSS) and usedtiis of Bayesian analysis in order

to determine the fraction of binaries with< 0.4 AU.



2 Methods

The SDSS produced an unprecedented amount of spectrostadpic Data Release 7 (DR7) in-
cludes spectra of over 1.6 million objects, 460,000 of whach stars. For each of these objects,
a minimum of three 15 minute spectroscopic exposures w&sntantil certain requirements for
the signal-to-noise ratio (3) were met (Abazajian et al. 2009). The sheer size of theskttand
the fact that each object was observed several times a@$amucial to this analysis.

Before any analysis can occur, a list of stars observed b$D®S of spectral classes MO-LO
is required. | used the clean list of M stars observed by th8Sihat was compiled by Knapp et
al. (2010). Their list includes 51,193 stars of spectrassts MO-LO.

For each of the stars on this list, | wish to determine whetheamot it is a binary star. | do
this by looking for radial velocity (RV) variability. RV vaability implies that a star is a binary, as
a star that is not a binary has no forces acting upon its maththus continues to move at the
same velocity so thus its radial velocity, the velocity of 8tar in the line of sight, is constant. On
the other hand, the radial velocity of a binary star varies ttuits orbit around the center of mass
of the system. Before | can determine whether the star isrgodeg RV variations, | must first
determine its RV from each of several observations. Thewalg procedure is used to determine

the radial velocity.

2.1 Calculation of Radial Velocities

| determine the radial velocity of each observation of anyecbwhich satisfies the following

conditions:
1. Itis on the list compiled by Knapp et al. (2010),
2. the: magnitude of the object satisfi@s.00 < i < 20.50, and

3. the time between the first and last observatiin, satisfies eithed hr < At < 4 hr or

2d <At <30d.



The reason for the two time selections is the following0 lir < At < 4 hr, then the ob-
servations are close enough together in time that | woul@exjp see only a very small change
in the radial velocity even if the object being observed idraaty star. Thus, the radial velocity
variations observed among the objects which satidfy < At < 4 hr are used to determine the
accuracy of the radial velocity values that | calculate. Baather hand, among the set of objects
with 2 d < At < 30 d, the time spread between the observations is long enoagiif the object
is a binary star it is possible that | would observe signifiday variations.

Due to the star’s motion relative to Earth, the observedtsaéx Doppler shifted relative to the
spectra emitted by the star. By comparing the observedspectemplate spectra of a M star, it is
possible to determine what value of the radial velocity ltssn the best fit between the template
and the observed spectra. Obviously, in order to do this, meicessary to have template spectra
available against which to compare the spectra. Such teengpectra are readily available. In this
paper, | use the templates that Bochanski et al. (2007) pextitor each of the spectral classes
MO-LO using over 4000 SDSS spectra.

Each observation is fitted to each of the 11 templates (onesfch spectral class from MO-LO).
Using a code written in Interactive Data Language (IDL), tedmine the radial velocity that gives

the best fit between the spectra and one of the templates bgnining
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where the sum is over all pixels in the set S (I return to thendtedn of the set S below)yf; is the

flux of the " pixel, m();) is the value of the model &, the wavelength of thé"ipixel, ando; is
the standard deviation gf. For f;, | used the spectra from the red arm of the SDSS spectrograph
which spans the regioh = 5800 — 9200 A at a resolution of\/A) ~ 1800 and contains 2048
pixels (Stoughton et al. 2002).

As the templates provided by Bochanski et al. (2007) are abred, two parameters deter-
mine the modeln. These are the radial velocity and a multiplicative factius, if | lett(\, v)

be the value of the template Doppler shifted by the velocigt the wavelength\, | have that



m(A\) = a - t(\, v) wherea is the multiplicative factor and is the radial velocity. Thus,
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X2 _ Z( — ( ))2 (2)
i€S t

Basic calculus tells us that at the minimumgf bothaa—’f =0 andaa—’jj2 = 0. From the first, it

follows that the value of at the minimum is given by
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As this is a function ofv, | have reduced the problem of finding the minimuméffrom a two

dimensional problem to a one dimensional problem.

Let us now consider the nature &f\, v). The templates created by Bochanski et al. (2007)
give values for the flux at 0.1A intervals from 3825A to 9200Wus, in order to determine the
value of the flux at any wavelength other than at the exaciegtwovided by the template, | must
interpolate from the templates. | choose to use cubic sphtepolation for this purpose (Press
et al. 1992). Thus, the value of)\,v) can be determined by Doppler shifting the template by
the velocityv and then interpolating ta. Equivalently, it can be done by interpolating to the
wavelength that results from Doppler shiftindoy —v. Since Doppler shiftings by —v gives the
wavelength\/% - A\, t(\, v) is the result of interpolating the template\t)é% -

In the definition ofy? given in Equation 1, | took the sum to be over all pixels in S.iM/h
generally the sum would be taken over all the pixels, | exelsoime pixels whose inclusion would

severely impair the quality of the fit. A pixelisin S unlesdesst one of the following is true:
1. The wavelength of the pixel, satisfies\ > 9150A,
2. the wavelength of the pixel, satisfie$540A < X\ < 65854, or
3. the BADSKYCHI mask bit was set for that pixel.

The reasons that | exclude these pixels are as follows. Theléges provided by Bochanski et
al. (2007) extend only t8200A, so clearly | can not use cubic spline interpolation to find value

of the flux at a wavelength greater tha200A. Since determining requires interpolating the

templates to the wavelengWi ;: -\, this quantity must be less than00A. While a sufficiently
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large negative velocity will result in this quantity beingegter thard200A for any ), if | assume

that|v| < 1-10°T (a reasonable assumption as it would be quite exceptiorayifstar was

moving faster than - 10°T), then forA < 9150A, \/E A < 9200A. Thus, | exclude pixels with
A > 9150A.

The strength of the H line varies significantly between M stars (Bochanski et ab02).
Therefore, the strength of the line in the templates is nutasentative of all M stars. Thus, inclu-
sion of the Hv would result in a worse fit. | remedy this by removing any psxeith wavelength
6540A < X\ < 6585A. This range was chosen as if | again assume that the spebd sfr is less
than1 - 10°%, then the K line (which has a wavelength 6662.8A) will fall within this range.

The BADSKYCHI mask bit indicates that the sky emission liaes not being well fit by the
spectra extraction pipeline used by the SDSS. This is ae @sthe light observed by the telescope
is a combination of the stellar spectra and the sky emisg@s ko to determine the stellar spectra,
the sky emission lines must be subtracted off from the olagenval data. If the spectra extraction
pipeline does a poor job of fitting the sky emission linesntti@s results in much greater errors
in the resulting stellar spectrum. For this reason, | exelptkels which have the BADSKYCHI
mask bit set.

A full definition of x2 has now been given. While determining analytically whatabkeelocity
yields the minimumy? for a particular spectra and template is not feasible, dsmgumerically
is straightforward.

Once all eleven of the templates have been fit to each of thenadisons of a single object
and the radial velocity that results in the minimuygh has been determined for each pair of an
observation and a template, | must determine which of thepkat®s fit the object the best as
obviously the object can only be one spectral type. If Mgtrepresent the minimurg? when the
j™" template is fit to thel observation, then the template which best fits the objedtdswhich
corresponds to the value of j that gives the smallest valugpf(?j where the sum is over all
the observations. | then take the radial velocity valuehefdbservations to be those determined

by fitting it to that template. | then correct for the motiontbe Earth by adding the barycentric
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correction calculated by the SDSS pipeline to the calcdleadial velocities.

2.2 ldentifying Binaries

Once | have determined the radial velocity of each obsewwatif each object, | now wish to
determine from the radial velocities whether the objectngergoing RV variability. However,
before doing this, | apply several cuts to the sample. | netaly observations that satisfy all of the
following: the average signal to noise of the pixels is gee#ttan 10, the observation is not among
the 10% of observations with the greatest values ofythef the template fit, and after applying
the two previous cuts, at least three observations of thecbbgmain in the sample. After applying
these cuts, 23,135 observations of 7,081 objects remaklreisample witt) hr < At < 4 hr and
7,501 observations on 1,639 objects remain in the sample2ndt< At < 30 d. Figure 1 shows
the distributions of several properties of the stars thatai@ in the sample following these cuts.
Now for each of the remaining objects, if R@nd (S/N); represent the radial velocity after
applying the barycentric correction and the average sitprabise ratio of all pixels of the™

observation of the object, respectively, | compute
Zi(S/N)i

for each observation of the object. This is the differendgvben the radial velocity of the observa-

tion and the weighted average of the radial velocities ablbflervations where the weight function
is (SIN);.

Using the data from the sample withthr < At < 4 hr, | must establish a means to identify an
object as either an RV variable or not an RV variable. | do #ésigollows. For each object in the

sample with2 d < At < 30d, | compute

M
T Zz:l | ‘ (5)

M
where M is the number of observations. | mark the object as av&diable if the probability of
obtaining a value of greater than that of the object from a sample of observatioaisare not

experiencing RV variations is less thaor3.
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Figure 1: Histograms of several different properties ofsfar the sample.

The sample of objects withhr < At < 4 hris a sample of observations that are not undergo-

ing RV variations. As stated above, even if the object is afyirstar and thus has RV variations,

the change in the radial velocity in a period of 4 hours is $er@ugh not to require consideration.
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| run a Monte Carlo simulation of0” hypothetical objects to determine a cutoff fowhich is
exceeded by only0” - 10~* = 10* of the simulated objects. For each trial, | choose the number
of observations from the distribution of the number of olwvaépons of each object in the sample
with 0 hr < At < 4 hr. | then choose thARV value of each of these fake observations randomly
from the values calculated for the objects in the sample witlh < A¢ < 4 hr and computer
using Equation 5. Once | have calculatefbr each of the hypothetical objects, | then establish the
cutoff value forz at a value so that exactly)* of the simulated objects have a valuezofreater
than the cutoff. From this cutoff, | determine which sta@nfrthe sample witl2 d < At < 30d

are RV variables.

2.3 Bayesian Analysis

The key formula of Bayesian analysis is Bayes’ theorem whtakes that

P(X|Y,I) < P(Y|X,I)- P(X|I) (6)
whereP (XY, I), the probability of X given Y and I, is the posterior distrtimn; P(Y'| X, I), the
probability of Y given X and |, is the likelihood distributio and P(X|I), the probability of X
given |, is the prior distribution for any X and Y where | is thelevant background information
(Sivia & Skilling 2006). If | takeX, X5, ..., X,, to be a set of hypotheses and Y to be the data and
calculate the likelihood distribution and the prior dibtrtion, | can then determine the posterior
distribution from which | am able to determine which of theey hypotheses is most likely.

Let us now consider the specific problem | address hereDeipresent the number of objects
detected,V represent a value for the close binary fraction, @depresent knowledge of any
relevant background information about the objects and bseations of the objects such as the
magnitudes of the objects in the g, r, i, andz bands, and the times of the observations. Now if |

takeX = N,Y = D and/ = B, then by Bayes’ theorem
P(N|D, B) o< P(DIN, B) - P(N|B) (7)

Let us now consider the likelihood functid®( D|N, B). As D represents the number of objects



detected as RV variables, it follows that

P(DIN,B)=> P({0;,,0,,,...,0:,}|N,B) (8)
whereP({0;,,O,,,...,0;,}|N, B) is the probability that exactly th® objects;, is, ..., ip, are
detected as RV variables and the sum is over all sets of D tshjBtce whether or not one object

is detected is independent of whether or not another olgedttected,

P({Oi170i27“‘7OiD}|N7 B) = HP(0J|N7 B) ’ HP(OJ‘N7 B) 9)
jeL JgL
wherel = {iy,is,...,ip}, P(O;|N, B) is the probability the'] object is detected anl(O,| N, B)

is the probability the'f object is not detected. Substituting that into Equationv@gji

P(DIN,B) = [[[ P(O;IN.B) - [ P(O;|N. B)] (10)
jeL JE¢L
| now must consider how to calculate(O;|N, B) and P(O;|N, B). Following Maxted &

Jeffries (2005) in assuming that the only cause of RV valitghs binary stars, it follows that the
probability that the'] object is detected as an RV variableN® e j + (1 — N) - 1072 where
Pdetect,; 9ives the probability that | will detect th® jpbject as an RV variable if it is in fact a binary
star. Note that the termil — N) - 1073 arises from the fact that — N is the probability that
the object is not a binary star whil#—3 is the probability that an object will be detected as an
RV variable if it is not a binary star by the definition of thaterion | established to determine
whether or not an object is an RV variable. Thi§(O;|N, B) = Npgetect; + (1 — N) - 107 and
P(O;IN,B) = 1—P(Oy|N, B) = 1 — [Npgetect; + (1 — N) - 1073]. | now must determingcsc.:.;
for each of the objects in the sample witid < At¢ < 30 d. | shall do this using a Monte Carlo
simulation.

| ran a Monte Carlo simulation of0® virtual binary stars for each of the 1,639 objects in the
sample with2 d < At < 30 d to see what fraction would be identified as RV variables gisie
above methods to identify RV variables. In order to do thisyust specify distributions for the
various properties of a binary system. | use the followirgributions.

Semimajor axis, a: In order to have a reasonable chance to detect a binary saiing@le with

2d < At < 30 d, At must be a significant fraction of the period of the system. dssume
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that it is necessary for us to see at Ie?slf the orbit to have a possibility of detecting the object,
it follows that P < 3 - 2592000 s = 7776000 s. Since the stars | am looking at are M stars,
my < 0.5 My, so it then follows from Kepler’'s third law that < 0.40 AU. Thus,a < 0.40 AU
is necessary for there to be a reasonable chance of deté@ngnary. The distribution of the
semimajor axis for systems with such small semimajor axe®iknown. | shall consider two
different distributions. The first is a uniform distributidrom 0.01 to 0.4 AU, while the second
distribution is a linear distribution such th&{a) « « that also runs from 0.01 to 0.4 AU. The lower
limit of .01 AU is chosen as systems with smaller semimajor axes woulddvedibly uncommon.
Note that one would expect the uniform distribution to ogtiraate the value Ofe..:; as the
the correct distribution should have a higher probabilityaoger separations and a corresponding
lower probability of smaller separations (Allen 2007). loverestimate Qfget... ; in turn implies
that the best fit binary fractiofvV will be underestimated.

Mass ratio, ¢: | follow Allen (2007) in using a power law distribution wita minimum of
g = 0.02. Thus, if | lety represent the power law index, the probability distribntionction ofq
is
q’Y

 Jpade
for .02 < ¢ < 1andP(q) = 0for 0 < ¢ < .02. | test distributions that use three different values

P(q) (11)
for 4. I testy = 1.8, the value that Allen (2007) found and= 1.2 and 2.2, the extreme values on
the 1o confidence interval given by Allen (2007).

Primary mass, m,: Unfortunately, there is not a good way to determine the nudshe
primary from the observed spectra as there are no well4edéd mass-color or mass-luminosity
relationships using the SDSS filters. Additionally, not Wmag the metallicity or age of the star
increases the uncertainty in determining the mass of thre $tawever, | am able to obtain a
rudimentary estimate of the primary mass by the followingmee Using the color transformations
provided by Davenport et al. (2006), from my knowledge ofdlpparent magnitude of the star in
ther andi: bands, | can determine thie- J color. Also, using the color-magnitude relationships
provided by West, Walkowicz, & Hawley (2005), | can determthe absolute magnitudg&/;, in
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the: band from the — z color of the objects. Then, sinée- J = M; — M, | can calculate\/;.
Finally, the mass-luminosity relations of Delfosse et 20Q0) allow for the determination of the
star’'s mass from\/;. While the individual values of the mass obtained by thesanmaare highly
guestionable, this is remedied by choosing the primary rfrags a uniform distribution from .75
to 1.25 times the calculated mass and by the fact that | ang tisis mass value for a Monte Carlo
simulation.

Eccentricity, e: It is well known that binaries with very short periods (P<d)@re highly likely
to undergo tidal circularization (Duquennoy & Mayor 1991eildom & Mathieu 2005) and thus
have circular orbits. While those objects in the simulatioth the largest separations can possibly
havee # 0, | shall not take this into account here. Thus, | assumecthad for all objects.

Orbital phase, f: The orbital phase at the time of the first observation musthzesen from a
uniform distribution from O to 1.

Inclination, 7: The inclination must be chosen from a uniform distributitom 0O tor radians.

Longitude of periastron, w: The longitude of periastron must be chosen from a uniform
distribution from O to2= radians.

For each trial, | randomly choose values for the above pt@seof the system from the given
distributions. | then consider the same number of obsematas there were of the actual object,
with the same time separation between the observations, Tdreeach observation, | can calculate

the hypothetical radial velocity using the formula

o asin i
RV = P(fi—sg;l/?[cos(ﬁ + w) + e cos w] (12)
where the true anomaly, satisfiescos = 10325);%’ the eccentric anomaly, E, is given Iy —

esin £ = %(t — T), andT is the time of periastron passage (Hilditch 2001). While Irox
know T, | do know that% (t — T') = 25(¢t — t;) + 25(t; — T) = 25(t — ;) + 2w f wheret, is
the time of the first observation and the second equalityuis brecausé=~ is simply the orbital
phasef. | then calculate the value &€ RV for each observation using the values giNSor each
observation of the actual object. | then mustinclude thereéhat occurs in the measurement of the

RV from the spectra by adding a number randomly chosen fre\tRV values for the sample
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with 0 hr < At < 4 hr to the calculated\ RV'. | can then compute using Equation 5 just as | did
for the sample witl2 d < At < 30 d. If the value ofz is greater than the cutoff value determined
in section 2.2]11.9 km/s, then this star would have been detected. By runhifgrials for each
of the 1,639 objects in our sample wighd < At < 30 d and determining the fraction of trials
in which we detect the simulated object, | have determingd.. ; and am thus able to determine
P(D|N, B).

| now must specify the prior distributior?(N|B). | follow Allen (2007) in choosing a prior
that assumes no prior knowledge and therefore is not biaseardls any particular values of N.

Thus, as N is a scale parameter, the proper prior to use igtfieyks’ prior (Sivia & Skilling 2006),
1
P(N|B) ¥ (13)

| have now specified both the likelihood and prior distribati Thus, by simply multiplying

the two, | have the posterior distribution. The posteriatlbution is

P(N|D,B) x P(D|N,B) - P(N|B) (24)
< S II PN B) - [T POIN. B + (15)
jeL J¢L

_ _ 1
o S TN pactees + (1= N)107] - [[[Npactees + (1 = N)107] - - (16)
JeL J¢L
| can then determine the constant of proportionality ushregrtormalization condition

/1 P(N|D, B)dN = 1. (17)

From the posterior distribution, | am able to determine thstlit value of the binary fraction and

uncertainties in this value.

3 Reaults

A histogram of the values ch RV computed for the sample withhr < At < 4 hr in section
2.2 is shown in Figure 2. The standard deviation of th&V values is4.1 km/s which compares
favorably with the rms velocity error di.5 km/s atg = 18.5 and12 km/s atg = 19.5 reported
by Abazajian et al. (2009). However, it is interesting toentitat there is a small set of objects
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with very large ARV values. Among the 7081 objects in the sample witlr < At < 4 hr, 15

of the objects have at least one observation for which theevaf ARV > 20 km/s. This is far
greater than would be expected if the valueadtl” followed a Gaussian distribution as one would
expect. These objects certainly deserve further condiderand possibly further observation.

Figure 2: A histogram of th& RV for the sample witl) hr < At < 4 hr
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Table 1: (pgetect, ;) @and the best fit value oV and thelo (68.3%) confidence interval oN for each combination of
a andq distribution

P (a) P (q) <pdetect,j > N
Uniform v=12  0.38 3.170%%
Uniform =18 0.39 3.1%3%%
Uniform ~v=22  0.39  3.0105%

Linear y=12 027 43%%9%
Linear =18 028 4.2'9%
Linear =22 029 4.19%%

Following the procedure given in section 2.2, | determineel ¢utoff forx to be11.9 km/s.
Among the 1639 objects in the sample withd < At < 30 d, 22 exceed this cutoff and were
detected as RV variables.

The data produced by section 2.2 and the models for the bdatameters were fed into the
Monte Carlo simulation which in turn feeds the calculateldiga ofp,.;... ; into Equation 16. The
resulting posterior distribution is shown in Figure 3 fochacombination of; andgq distribution.
Table 1 gives the average valuemf;... ; over all the objects and the best fit valuedfand thelo
confidence interval oV for each combination af andq distribution. From Table 1, it is clear that

changing the power law index,has negligible impact on N. However, using a linear distitiu
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for a as opposed to a uniform distribution increases N as | exgedtee to the decrease @f.;c.: ;
that results from using a distribution with a higher proli#piof large separations and a lower
probability of small separations. The increase in N thatilitssfrom using a linear distribution
instead of a uniform distribution i5.1%. From here forth, | shall focus on the value of N derived

for a uniform distribution. Thus, the close binary fractiofthe objects in my sample &1 5%.
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Figure 3: The left column is for a uniform distribution afand the right column is for a linear distribution @f The
rows are fory = 1.2, 1.8, and 2.2, respectively
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4 Discussion

Other investigations have determined the close binargimador various spectral types. Duquen-
noy & Mayor (1991) found thab.6% of G stars are binaries witth < 0.4 AU, while Blake et al.
(2010) found tha.5% of late-M and L stars are binaries with< 1.0 AU. Figure 4 summarizes
these results. Note that the value given by Blake et al. (ROt significantly overestimate for
the fraction of late-M and L stars which are binaries witk: 0.4 AU as it also includes binaries
with 0.4 AU < a < 1.0 AU. It is thus apparent that the close binary fraction desesawith
decreasing primary mass. While others have noted that taélmary fraction decreases with
decreasing primary mass, it has not been previously shoatrtte same holds for the close binary

fraction.

Figure 4: The values for the close binary fraction deterrdibg Duguennoy & Mayor (1991), Blake et al. (2010), and
this paper as a function of mass. The error bounds on my valgetige 10 uncertainty in the close binary fraction
that | found. Error bounds are not available for the valueegitty Duquennoy & Mayor (1991) and as | am using the
value provided by Blake et al. (2010) as an upper limit, anrdsound is not applicable.
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The current understanding of star formation is that starmf;m small-N clusters, multiple
systems containingy > 3 stars, which are then broken apart by two processes, dyaadecay
and dynamical destruction (Goodwin et al. 2007). In dynaidiecay, due to the instability of
multiple systems, a member of the system is ejected on avedlashort time scale. Anosova
(1986) showed that in the vast majority of cases, the stategjas the least massive of the stars
in the system. In dynamical destruction, interactions wather stars in the star cluster disrupt

binary stars; however, this occurs on a far longer time sitele dynamical decay (Goodwin et al.
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2007). Note that the previously observed correlation betwaass and the total binary fraction
supports both of these theories. Due to the preferentiatiejeof lower mass stars from systems
by dynamical decay, it follows that one would expect a low snstar to have a higher fraction of
single stars and a corresponding lower fraction of binaayssivhile low mass star binaries would
also be more likely to undergo dynamical disruption due teractions with more massive stars in
the star cluster which also leads to a lower binary fraction.

However, if | consider the previous results that the totabloy fraction is lower for lower mass
stars and that the peak of the semimajor axis distributi@t &lower values of for lower mass
stars (Duquennoy & Mayor 1991, Fischer & Marcy 1992, Alle®2palong with my result here
that the close binary fraction is lower for low mass starsnlthen able to conclude that dynamical
destruction alone cannot account for the observations gndndical decay or some other process
must play an important role in star formation. Heggie (19&8) Hills (1975) found that while
dynamical destruction disrupts loosely bound binariesctually results in close binaries such
as those that | considered here to become even more tightilydooTherefore, if dynamical de-
struction is the only process governing star formationntiiéollows that the close binary fraction
should be constant as a function of mass. This contradietsetbult that | obtained here that the
close binary fraction is smaller for low mass stars than forermassive stars. Thus, it follows that
some process other than dynamical destruction serves aortamp role in star formation. This
could be dynamical decay or some other yet unknown process.

Fischer & Marcy (1992) also determined the close binarytioacfor a < 0.4 AU. In their
sample of 62 objects, they detected 1 object and after dorgeéor their detection efficiency,
found the close binary fraction to Hes*{$%. Clearly, a sample that includes only one detection
results in a very imprecise determination of the close lyifi@ction, but it is worth noting that my
results agree with those of Fischer & Marcy (1992) to witHnait error.

This analysis is distinct from previous works on the binaagction in the sample that | consider.
Previous works such as Duquennoy & Mayor (1991), Fischer &dy1§1992), and Blake et al.

(2010) have considered small samples in which each objexsblserved a large number of times
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with instruments capable of very high radial velocity pseon. Here | consider a far larger sample
with a lower number of observations per object that was ofeskat significantly lower precision.

Despite this limitation, | still was able to obtain inteni@stresults. This suggests that, in the future,
large scale surveys such as the SDSS can be used in the plseaples observed specifically to

determine the binary fraction.

5 Conclusonsand Future Work

| have determined the close binary fractian< 0.4 AU) of M stars to be3.1755%. By comparing
this result to the close binary fraction of G stars and uticdclwarfs (late-M and L dwarfs), | have
shown that the close binary fraction is a decreasing funaifanass. While it has previously been
shown that the total binary fraction is a decreasing fumctibmass, this result had not previously
been shown for the close binary fraction.

It would be intriguing to observe both the 22 objects in thegke with2 d < At < 30d that |
found to be binary stars and the 15 stars in the sampletith< At < 4 hr that | found to have
very large ARV values. Tables 2(a) and 2(b) give the right ascension, riggebin, i magnitude,
and the value of: computed using Equation 5 for the 22 detected binaries and3hobjects with
abnormally largeA RV values, respectively. It would also be valuable to conduneta-analysis
of this data set together with the data sets provided by Béaled. (2010) and Allen (2007). This
would allow me to determine the binary fraction for a largemnge ofa.

Future large scale spectroscopic surveys that provide pre@se data than that of the SDSS
will allow for more accurate determinations of the closednnfractions and will allow for the
extension of this method to binaries with separations latigena = 0.4 AU. Additionally, the
close binary fraction of stars of later spectral types reraaelatively poorly constrained. A large
sample of more precise data would allow for an analysis sinhil that conducted here to be carried

out on L stars.
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Table 2: The left and right subtables give the right ascengieclination, i magnitude, and the valuezotalculated
using Equation 5 for each object in the sample Witth < At < 30 d that | detected as a binary and the objects in the
sample with0 hr < At < 4 hr for whichARV > 20 km/s, respectively.

RA DEC [ x RA DEC [ x
312.19107, 0.667030| 17.47| 47115.1 34.659969 0.829670 16.98| 16232.7
343.70959 -10.167570 17.17| 17300.3| | 127.13995 | 34.258789 16.79| 14789.3
248.06541 0.988510] 16.66| 24150.0| | 134.84064 | 37.196651 18.19| 15016.6
127.61649 45.793491 17.33| 13447.2| | 118.18209 | 25.824551 17.39| 15240.2
175.21191] 53.384460 16.65| 12511.2| | 237.20148 | 36.467701 17.04| 16921.6
17.66198] -1.235980| 17.31| 12088.3 7.93530 | 0.509350] 17.49| 13935.1
17.72551| 0.874290| 16.54| 14004.6| | 248.93524 | 24.508989 16.78| 13007.9
5.34449| -0.886580| 17.07| 13678.3| | 248.48320 | 29.623631 16.98| 12527.1
248.50588 0.836120 16.87| 14091.3| | 193.78691 | 32.147221 17.04| 9684.0
321.44168 -6.149620] 16.12| 16083.4| | 247.58414 | 30.881821 16.62| 19982.4
5.61987| -1.135260| 16.59| 12455.9| | 218.85271 | 23.380430 16.97| 16687.1
11.94934| -0.764040| 17.02| 16743.2| | 169.19923 | 29.767429 16.24| 14342.1
116.11788 19.265209 17.47| 70133.7| | 111.67760 | 41.712002] 16.64| 14201.5
116.69219 28.441660 17.55| 11926.7| | 172.48730 | 31.313780 16.78| 83841.9
184.93391 26.133289 16.13| 12320.1| | 140.93979 | 22.409000 16.56| 47684.3
175.12529 15.708770 16.18| 47315.8
4.69498| 0.043800| 17.41| 20002.2
162.62589 42.247631 16.44| 23621.8
164.31570 43.162769 16.33| 23955.8
332.20187| 0.069430| 17.12| 23225.4
177.85146 37.331612 16.37| 13815.2
132.17156, 23.347710 16.34| 91953.5
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