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ABSTRACT

I have used cross-correlation to determine radial velocities from 145,888 individual spectra of a

magnitude-limited sample of 39,543 M dwarfs observed by theSloan Digital Sky Survey (SDSS). I

then used Bayesian analysis and Monte Carlo simulations to determine the close binary fraction of

M dwarfs. While previous results on the close binary fraction were based upon very small samples

and thus were unable to provide very precise values, the results that I present here are based on far

larger samples, and are thus more precise and fit to serve as a constraint on proposed theories of

star formation. After adjusting for my detection efficiency, I found the frequency of binary stars

with a < 0.4 AU to be3.0
+.6

−.9%. I also demonstrated that the close binary fraction, like the total

binary fraction, decreases with decreasing primary mass.
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The Close Binary Fraction:
A Bayesian Analysis of SDSS M Dwarf Spectra

1 Introduction

A complete theory of star formation remains to be found and isa major open problem in astro-

physics. Many theories have been proposed to explain star formation, but any successful theory

must make predictions which agree with all of the relevant observations. In particular, in the spe-

cial case of binary stars, star systems which consist of two stars orbiting their center of mass, the

theory must yield conclusions which match the observational results. It follows that the frequency

of binary stars determined by the theory must match those determined observationally or the theory

can not possibly be correct. Thus, the observationally determined binary fraction can be used as a

constraint on proposed theories of star formation.

Various investigations have examined the binary frequencyfor different spectral classes. Duquen-

noy & Mayor (1991) found that G stars have a binary frequency of ∼57%. Fischer & Marcy (1992)

conducted a similar survey of early-M stars and found that they have a binary frequency of 42%

± 9%. As an intermediary result, based upon a sample of 62 objects, they also found that the fre-

quency of binaries with0.04 AU < a < 0.4 AU to be∼1.8%. More recently, Allen (2007) found

that ultracool dwarfs (M6 and later) have a binary frequencyof 20%± 4%. However, a common

feature of all of these surveys is that they include a relatively small number of stars. Duquennoy

& Mayor (1991) included 164 stars, Fischer & Marcy (1992) included 179 stars, and Allen (2007)

included 361 stars. A survey which included a larger number of stars would be able to give more

precise values for the binary frequency than the surveys that have been conducted so far.

In this paper, I shall address the close binary fraction rather than the total binary fraction. For

this purpose, I have carried out an extensive investigationof M dwarfs (spectral classes M0-L0)

observed by the Sloan Digital Sky Survey (SDSS) and used the tools of Bayesian analysis in order

to determine the fraction of binaries witha < 0.4 AU.
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2 Methods

The SDSS produced an unprecedented amount of spectroscopicdata. Data Release 7 (DR7) in-

cludes spectra of over 1.6 million objects, 460,000 of whichare stars. For each of these objects,

a minimum of three 15 minute spectroscopic exposures were taken until certain requirements for

the signal-to-noise ratio (S/N) were met (Abazajian et al. 2009). The sheer size of the dataset and

the fact that each object was observed several times are factors crucial to this analysis.

Before any analysis can occur, a list of stars observed by theSDSS of spectral classes M0-L0

is required. I used the clean list of M stars observed by the SDSS that was compiled by Knapp et

al. (2010). Their list includes 51,193 stars of spectral classes M0-L0.

For each of the stars on this list, I wish to determine whetheror not it is a binary star. I do

this by looking for radial velocity (RV) variability. RV variability implies that a star is a binary, as

a star that is not a binary has no forces acting upon its motionand thus continues to move at the

same velocity so thus its radial velocity, the velocity of the star in the line of sight, is constant. On

the other hand, the radial velocity of a binary star varies due to its orbit around the center of mass

of the system. Before I can determine whether the star is undergoing RV variations, I must first

determine its RV from each of several observations. The following procedure is used to determine

the radial velocity.

2.1 Calculation of Radial Velocities

I determine the radial velocity of each observation of any object which satisfies the following

conditions:

1. It is on the list compiled by Knapp et al. (2010),

2. thei magnitude of the object satisfies16.00 ≤ i ≤ 20.50, and

3. the time between the first and last observation,∆t, satisfies either0 hr ≤ ∆t ≤ 4 hr or

2 d ≤ ∆t ≤ 30 d.
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The reason for the two time selections is the following. If0 hr ≤ ∆t ≤ 4 hr, then the ob-

servations are close enough together in time that I would expect to see only a very small change

in the radial velocity even if the object being observed is a binary star. Thus, the radial velocity

variations observed among the objects which satisfy0 hr ≤ ∆t ≤ 4 hr are used to determine the

accuracy of the radial velocity values that I calculate. On the other hand, among the set of objects

with 2 d ≤ ∆t ≤ 30 d, the time spread between the observations is long enough that if the object

is a binary star it is possible that I would observe significant RV variations.

Due to the star’s motion relative to Earth, the observed spectra is Doppler shifted relative to the

spectra emitted by the star. By comparing the observed spectra to template spectra of a M star, it is

possible to determine what value of the radial velocity results in the best fit between the template

and the observed spectra. Obviously, in order to do this, it is necessary to have template spectra

available against which to compare the spectra. Such template spectra are readily available. In this

paper, I use the templates that Bochanski et al. (2007) produced for each of the spectral classes

M0-L0 using over 4000 SDSS spectra.

Each observation is fitted to each of the 11 templates (one foreach spectral class from M0-L0).

Using a code written in Interactive Data Language (IDL), I determine the radial velocity that gives

the best fit between the spectra and one of the templates by minimizing

χ2 =
∑

i∈S

[
fi − m(λi)

σi
]2 (1)

where the sum is over all pixels in the set S (I return to the definition of the set S below),fi is the

flux of the ith pixel, m(λi) is the value of the model atλi, the wavelength of the ith pixel, andσi is

the standard deviation offi. Forfi, I used the spectra from the red arm of the SDSS spectrograph

which spans the regionλ = 5800 − 9200 Å at a resolution ofλ/∆λ ≈ 1800 and contains 2048

pixels (Stoughton et al. 2002).

As the templates provided by Bochanski et al. (2007) are normalized, two parameters deter-

mine the modelm. These are the radial velocity and a multiplicative factor.Thus, if I let t(λ, v)

be the value of the template Doppler shifted by the velocityv at the wavelengthλ, I have that
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m(λ) = a · t(λ, v) wherea is the multiplicative factor andv is the radial velocity. Thus,

χ2 =
∑

i∈S

(
fi − a · t(λi, v)

σi

)2 (2)

Basic calculus tells us that at the minimum ofχ2, both ∂χ2

∂a
= 0 and ∂χ2

∂v
= 0. From the first, it

follows that the value ofa at the minimum is given by

a =

∑

i∈S(fi·t(λi,v)
σ2

i

)
∑

i∈S( t(λi,v)2

σ2

i

)
(3)

As this is a function ofv, I have reduced the problem of finding the minimum ofχ2 from a two

dimensional problem to a one dimensional problem.

Let us now consider the nature oft(λ, v). The templates created by Bochanski et al. (2007)

give values for the flux at 0.1Å intervals from 3825Å to 9200Å.Thus, in order to determine the

value of the flux at any wavelength other than at the exact values provided by the template, I must

interpolate from the templates. I choose to use cubic splineinterpolation for this purpose (Press

et al. 1992). Thus, the value oft(λ, v) can be determined by Doppler shifting the template by

the velocityv and then interpolating toλ. Equivalently, it can be done by interpolating to the

wavelength that results from Doppler shiftingλ by −v. Since Doppler shiftingλ by −v gives the

wavelength
√

1− v

c

1+ v

c

· λ, t(λ, v) is the result of interpolating the template to
√

1− v

c

1+ v

c

· λ.

In the definition ofχ2 given in Equation 1, I took the sum to be over all pixels in S. While

generally the sum would be taken over all the pixels, I exclude some pixels whose inclusion would

severely impair the quality of the fit. A pixel is in S unless atleast one of the following is true:

1. The wavelength of the pixel,λ, satisfiesλ > 9150Å,

2. the wavelength of the pixel,λ, satisfies6540Å < λ < 6585Å, or

3. the BADSKYCHI mask bit was set for that pixel.

The reasons that I exclude these pixels are as follows. The templates provided by Bochanski et

al. (2007) extend only to9200Å, so clearly I can not use cubic spline interpolation to find the value

of the flux at a wavelength greater than9200Å. Since determiningχ2 requires interpolating the

templates to the wavelength
√

1− v

c

1+ v

c

· λ, this quantity must be less than9200Å. While a sufficiently
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large negative velocity will result in this quantity being greater than9200Å for any λ, if I assume

that |v| ≤ 1 · 106 m
s (a reasonable assumption as it would be quite exceptional ifany star was

moving faster than1 · 106 m
s ), then forλ < 9150Å,

√

1− v

c

1+ v

c

·λ < 9200Å. Thus, I exclude pixels with

λ > 9150Å.

The strength of the Hα line varies significantly between M stars (Bochanski et al. 2007).

Therefore, the strength of the line in the templates is not representative of all M stars. Thus, inclu-

sion of the Hα would result in a worse fit. I remedy this by removing any pixels with wavelength

6540Å < λ < 6585Å. This range was chosen as if I again assume that the speed of the star is less

than1 · 106 m
s , then the Hα line (which has a wavelength of6562.8Å) will fall within this range.

The BADSKYCHI mask bit indicates that the sky emission linesare not being well fit by the

spectra extraction pipeline used by the SDSS. This is an issue as the light observed by the telescope

is a combination of the stellar spectra and the sky emission lines so to determine the stellar spectra,

the sky emission lines must be subtracted off from the observational data. If the spectra extraction

pipeline does a poor job of fitting the sky emission lines, then this results in much greater errors

in the resulting stellar spectrum. For this reason, I exclude pixels which have the BADSKYCHI

mask bit set.

A full definition of χ2 has now been given. While determining analytically what radial velocity

yields the minimumχ2 for a particular spectra and template is not feasible, doingso numerically

is straightforward.

Once all eleven of the templates have been fit to each of the observations of a single object

and the radial velocity that results in the minimumχ2 has been determined for each pair of an

observation and a template, I must determine which of the templates fit the object the best as

obviously the object can only be one spectral type. If I letχ2
ij represent the minimumχ2 when the

j th template is fit to the ith observation, then the template which best fits the object is that which

corresponds to the value of j that gives the smallest value of
∑

i χ
2
ij where the sum is over all

the observations. I then take the radial velocity values of the observations to be those determined

by fitting it to that template. I then correct for the motion ofthe Earth by adding the barycentric
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correction calculated by the SDSS pipeline to the calculated radial velocities.

2.2 Identifying Binaries

Once I have determined the radial velocity of each observation of each object, I now wish to

determine from the radial velocities whether the object is undergoing RV variability. However,

before doing this, I apply several cuts to the sample. I retain only observations that satisfy all of the

following: the average signal to noise of the pixels is greater than 10, the observation is not among

the 10% of observations with the greatest values of theχ2 of the template fit, and after applying

the two previous cuts, at least three observations of the object remain in the sample. After applying

these cuts, 23,135 observations of 7,081 objects remain in the sample with0 hr ≤ ∆t ≤ 4 hr and

7,501 observations on 1,639 objects remain in the sample with 2 d ≤ ∆t ≤ 30 d. Figure 1 shows

the distributions of several properties of the stars that remain in the sample following these cuts.

Now for each of the remaining objects, if RVi and (S/N)i represent the radial velocity after

applying the barycentric correction and the average signal-to-noise ratio of all pixels of the ith

observation of the object, respectively, I compute

∆RVi = RVi −

∑

i RVi · (S/N)i
∑

i(S/N)i

(4)

for each observation of the object. This is the difference between the radial velocity of the observa-

tion and the weighted average of the radial velocities of allobservations where the weight function

is (S/N)i.

Using the data from the sample with0 hr ≤ ∆t ≤ 4 hr, I must establish a means to identify an

object as either an RV variable or not an RV variable. I do thisas follows. For each object in the

sample with2 d ≤ ∆t ≤ 30 d, I compute

x =

∑M
i=1 |∆RVi|

M
(5)

where M is the number of observations. I mark the object as a RVvariable if the probability of

obtaining a value ofx greater than that of the object from a sample of observationsthat are not

experiencing RV variations is less than10−3.

6



2 4 6 8 10
Number of observations of each object

0

1000

2000

3000

4000

5000

6000

N
um

be
r

(a) A histogram of the number of observations of
each object in the sample with0 hr ≤ ∆t ≤ 4 hr
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(b) A histogram of the number of observations of
each object in the sample with2 d ≤ ∆t ≤ 30 d
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(c) A histogram of thei magnitude in the combined
sample
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(d) A histogram of thei − z color in the combined
sample
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(e) A histogram of∆t in the sample with0 hr ≤
∆t ≤ 4 hr
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(f) A histogram of∆t in the sample with2 d ≤
∆t ≤ 30 d

Figure 1: Histograms of several different properties of stars for the sample.

The sample of objects with0 hr ≤ ∆t ≤ 4 hr is a sample of observations that are not undergo-

ing RV variations. As stated above, even if the object is a binary star and thus has RV variations,

the change in the radial velocity in a period of 4 hours is small enough not to require consideration.
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I run a Monte Carlo simulation of107 hypothetical objects to determine a cutoff forx which is

exceeded by only107 · 10−3 = 104 of the simulated objects. For each trial, I choose the number

of observations from the distribution of the number of observations of each object in the sample

with 0 hr ≤ ∆t ≤ 4 hr. I then choose the∆RV value of each of these fake observations randomly

from the values calculated for the objects in the sample with0 hr ≤ ∆t ≤ 4 hr and computex

using Equation 5. Once I have calculatedx for each of the hypothetical objects, I then establish the

cutoff value forx at a value so that exactly104 of the simulated objects have a value ofx greater

than the cutoff. From this cutoff, I determine which stars from the sample with2 d ≤ ∆t ≤ 30 d

are RV variables.

2.3 Bayesian Analysis

The key formula of Bayesian analysis is Bayes’ theorem whichstates that

P (X|Y, I) ∝ P (Y |X, I) · P (X|I) (6)

whereP (X|Y, I), the probability of X given Y and I, is the posterior distribution; P (Y |X, I), the

probability of Y given X and I, is the likelihood distribution; andP (X|I), the probability of X

given I, is the prior distribution for any X and Y where I is therelevant background information

(Sivia & Skilling 2006). If I takeX1, X2, . . . , Xn to be a set of hypotheses and Y to be the data and

calculate the likelihood distribution and the prior distribution, I can then determine the posterior

distribution from which I am able to determine which of the given hypotheses is most likely.

Let us now consider the specific problem I address here. LetD represent the number of objects

detected,N represent a value for the close binary fraction, andB represent knowledge of any

relevant background information about the objects and the observations of the objects such as the

magnitudes of the objects in theu, g, r, i, andz bands, and the times of the observations. Now if I

takeX = N , Y = D andI = B, then by Bayes’ theorem

P (N |D, B) ∝ P (D|N, B) · P (N |B) (7)

Let us now consider the likelihood functionP (D|N, B). AsD represents the number of objects
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detected as RV variables, it follows that

P (D|N, B) =
∑

P ({Oi1, Oi2, . . . , OiD}|N, B) (8)

whereP ({Oi1, Oi2, . . . , OiD}|N, B) is the probability that exactly theD objects,i1, i2, . . . , iD, are

detected as RV variables and the sum is over all sets of D objects. Since whether or not one object

is detected is independent of whether or not another object is detected,

P ({Oi1, Oi2, . . . , OiD}|N, B) =
∏

j∈L

P (Oj|N, B) ·
∏

j 6∈L

P (Ōj|N, B) (9)

whereL = {i1, i2, . . . , iD}, P (Oj|N, B) is the probability the jth object is detected andP (Ōj|N, B)

is the probability the jth object is not detected. Substituting that into Equation 8 gives

P (D|N, B) =
∑

[
∏

j∈L

P (Oj|N, B) ·
∏

j 6∈L

P (Ōj|N, B)] (10)

I now must consider how to calculateP (Oj|N, B) andP (Ōj|N, B). Following Maxted &

Jeffries (2005) in assuming that the only cause of RV variability is binary stars, it follows that the

probability that the jth object is detected as an RV variable isNpdetect,j + (1 − N) · 10−3 where

pdetect,j gives the probability that I will detect the jth object as an RV variable if it is in fact a binary

star. Note that the term(1 − N) · 10−3 arises from the fact that1 − N is the probability that

the object is not a binary star while10−3 is the probability that an object will be detected as an

RV variable if it is not a binary star by the definition of the criterion I established to determine

whether or not an object is an RV variable. Thus,P (Oj|N, B) = Npdetect,j + (1 − N) · 10−3 and

P (Ōj|N, B) = 1−P (Oj |N, B) = 1− [Npdetect,j +(1−N) ·10−3]. I now must determinepdetect,j

for each of the objects in the sample with2 d ≤ ∆t ≤ 30 d. I shall do this using a Monte Carlo

simulation.

I ran a Monte Carlo simulation of105 virtual binary stars for each of the 1,639 objects in the

sample with2 d ≤ ∆t ≤ 30 d to see what fraction would be identified as RV variables using the

above methods to identify RV variables. In order to do this, Imust specify distributions for the

various properties of a binary system. I use the following distributions.

Semimajor axis, a: In order to have a reasonable chance to detect a binary in thesample with

2 d ≤ ∆t ≤ 30 d, ∆t must be a significant fraction of the period of the system. If Iassume
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that it is necessary for us to see at least1
3

of the orbit to have a possibility of detecting the object,

it follows that P < 3 · 2592000 s = 7776000 s. Since the stars I am looking at are M stars,

m1 < 0.5 M⊙, so it then follows from Kepler’s third law thata < 0.40 AU. Thus,a < 0.40 AU

is necessary for there to be a reasonable chance of detectingthe binary. The distribution of the

semimajor axis for systems with such small semimajor axes isnot known. I shall consider two

different distributions. The first is a uniform distribution from 0.01 to 0.4 AU, while the second

distribution is a linear distribution such thatP (a) ∝ a that also runs from 0.01 to 0.4 AU. The lower

limit of .01 AU is chosen as systems with smaller semimajor axes would be incredibly uncommon.

Note that one would expect the uniform distribution to overestimate the value ofpdetect,j as the

the correct distribution should have a higher probability of larger separations and a corresponding

lower probability of smaller separations (Allen 2007). This overestimate ofpdetect,j in turn implies

that the best fit binary fractionN will be underestimated.

Mass ratio, q: I follow Allen (2007) in using a power law distribution witha minimum of

q = 0.02. Thus, if I letγ represent the power law index, the probability distribution function ofq

is

P (q) =
qγ

∫ 1

.02
qγ dq

(11)

for .02 < q < 1 andP (q) = 0 for 0 < q < .02. I test distributions that use three different values

for γ. I testγ = 1.8, the value that Allen (2007) found andγ = 1.2 and 2.2, the extreme values on

the1σ confidence interval given by Allen (2007).

Primary mass, m1: Unfortunately, there is not a good way to determine the massof the

primary from the observed spectra as there are no well-calibrated mass-color or mass-luminosity

relationships using the SDSS filters. Additionally, not knowing the metallicity or age of the star

increases the uncertainty in determining the mass of the star. However, I am able to obtain a

rudimentary estimate of the primary mass by the following means. Using the color transformations

provided by Davenport et al. (2006), from my knowledge of theapparent magnitude of the star in

ther andi bands, I can determine thei − J color. Also, using the color-magnitude relationships

provided by West, Walkowicz, & Hawley (2005), I can determine the absolute magnitude,Mi, in
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thei band from thei − z color of the objects. Then, sincei − J = Mi − MJ , I can calculateMJ .

Finally, the mass-luminosity relations of Delfosse et al. (2000) allow for the determination of the

star’s mass fromMJ . While the individual values of the mass obtained by these means are highly

questionable, this is remedied by choosing the primary massfrom a uniform distribution from .75

to 1.25 times the calculated mass and by the fact that I am using this mass value for a Monte Carlo

simulation.

Eccentricity, e: It is well known that binaries with very short periods (P< 10d) are highly likely

to undergo tidal circularization (Duquennoy & Mayor 1991, Meibom & Mathieu 2005) and thus

have circular orbits. While those objects in the simulationwith the largest separations can possibly

havee 6= 0, I shall not take this into account here. Thus, I assume thate = 0 for all objects.

Orbital phase, f : The orbital phase at the time of the first observation must bechosen from a

uniform distribution from 0 to 1.

Inclination, i: The inclination must be chosen from a uniform distributionfrom 0 toπ radians.

Longitude of periastron, ω: The longitude of periastron must be chosen from a uniform

distribution from 0 to2π radians.

For each trial, I randomly choose values for the above properties of the system from the given

distributions. I then consider the same number of observations as there were of the actual object,

with the same time separation between the observations. Then, for each observation, I can calculate

the hypothetical radial velocity using the formula

RV =
2πa sin i

P (1 − e2)1/2
[cos(θ + ω) + e cos ω] (12)

where the true anomaly,θ, satisfiescos θ = cos E−e
1−e cos E

, the eccentric anomaly, E, is given byE −

e sin E = 2π
P

(t − T ), andT is the time of periastron passage (Hilditch 2001). While I donot

know T , I do know that2π
P

(t − T ) = 2π
P

(t − t1) + 2π
P

(t1 − T ) = 2π
P

(t − t1) + 2πf wheret1 is

the time of the first observation and the second equality is true becauset1−T
P

is simply the orbital

phase,f . I then calculate the value of∆RV for each observation using the values of S/N for each

observation of the actual object. I then must include the error that occurs in the measurement of the

RV from the spectra by adding a number randomly chosen from the ∆RV values for the sample
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with 0 hr ≤ ∆t ≤ 4 hr to the calculated∆RV . I can then computex using Equation 5 just as I did

for the sample with2 d ≤ ∆t ≤ 30 d. If the value ofx is greater than the cutoff value determined

in section 2.2,11.9 km/s, then this star would have been detected. By running105 trials for each

of the 1,639 objects in our sample with2 d ≤ ∆t ≤ 30 d and determining the fraction of trials

in which we detect the simulated object, I have determinedpdetect,j and am thus able to determine

P (D|N, B).

I now must specify the prior distribution,P (N |B). I follow Allen (2007) in choosing a prior

that assumes no prior knowledge and therefore is not biased towards any particular values of N.

Thus, as N is a scale parameter, the proper prior to use is the Jeffreys’ prior (Sivia & Skilling 2006),

P (N |B) ∝
1

N
. (13)

I have now specified both the likelihood and prior distribution. Thus, by simply multiplying

the two, I have the posterior distribution. The posterior distribution is

P (N |D, B) ∝ P (D|N, B) · P (N |B) (14)

∝
∑

[
∏

j∈L

P (Oj|N, B) ·
∏

j 6∈L

P (Ōj|N, B)] ·
1

N
(15)

∝
∑

[
∏

j∈L

[Npdetect,j + (1 − N)10−3] ·
∏

j 6∈L

[Npdetect,j + (1 − N)10−3]] ·
1

N
(16)

I can then determine the constant of proportionality using the normalization condition
∫ 1

0

P (N |D, B) dN = 1. (17)

From the posterior distribution, I am able to determine the best fit value of the binary fraction and

uncertainties in this value.

3 Results

A histogram of the values of∆RV computed for the sample with0 hr ≤ ∆t ≤ 4 hr in section

2.2 is shown in Figure 2. The standard deviation of the∆RV values is4.1 km/s which compares

favorably with the rms velocity error of5.5 km/s atg = 18.5 and12 km/s atg = 19.5 reported

by Abazajian et al. (2009). However, it is interesting to note that there is a small set of objects
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with very large∆RV values. Among the 7081 objects in the sample with0 hr ≤ ∆t ≤ 4 hr, 15

of the objects have at least one observation for which the value of∆RV > 20 km/s. This is far

greater than would be expected if the values of∆RV followed a Gaussian distribution as one would

expect. These objects certainly deserve further consideration and possibly further observation.

Figure 2: A histogram of the∆RV for the sample with0 hr ≤ ∆t ≤ 4 hr
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Table 1:〈pdetect,j〉 and the best fit value ofN and the1σ (68.3%) confidence interval onN for each combination of
a andq distribution

P(a) P(q) 〈pdetect,j〉 N
Uniform γ = 1.2 0.38 3.1+0.7

−0.8%
Uniform γ = 1.8 0.39 3.1+0.6

−0.9%
Uniform γ = 2.2 0.39 3.0+0.6

−0.9%
Linear γ = 1.2 0.27 4.3+0.9

−1.2%
Linear γ = 1.8 0.28 4.2+0.9

−1.1%
Linear γ = 2.2 0.29 4.1+0.8

−1.2%

Following the procedure given in section 2.2, I determined the cutoff forx to be11.9 km/s.

Among the 1639 objects in the sample with2 d ≤ ∆t ≤ 30 d, 22 exceed this cutoff and were

detected as RV variables.

The data produced by section 2.2 and the models for the orbital parameters were fed into the

Monte Carlo simulation which in turn feeds the calculated values ofpdetect,j into Equation 16. The

resulting posterior distribution is shown in Figure 3 for each combination ofa andq distribution.

Table 1 gives the average value ofpdetect,j over all the objects and the best fit value ofN and the1σ

confidence interval onN for each combination ofa andq distribution. From Table 1, it is clear that

changing the power law index,γ has negligible impact on N. However, using a linear distribution
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for a as opposed to a uniform distribution increases N as I expected, due to the decrease ofpdetect,j

that results from using a distribution with a higher probability of large separations and a lower

probability of small separations. The increase in N that results from using a linear distribution

instead of a uniform distribution is1.1%. From here forth, I shall focus on the value of N derived

for a uniform distribution. Thus, the close binary fractionof the objects in my sample is3.1+0.6
−0.9%.

0.00 0.05 0.10 0.15 0.20
N

0

10

20

30

40

50

60

P
(N

|D
,B

)

0.00 0.05 0.10 0.15 0.20
N

0

10

20

30

40

P
(N

|D
,B

)

0.00 0.05 0.10 0.15 0.20
N

0

10

20

30

40

50

60

P
(N

|D
,B

)

0.00 0.05 0.10 0.15 0.20
N

0

10

20

30

40

50

P
(N

|D
,B

)

0.00 0.05 0.10 0.15 0.20
N

0

10

20

30

40

50

60

P
(N

|D
,B

)

0.00 0.05 0.10 0.15 0.20
N

0

10

20

30

40

50

P
(N

|D
,B

)

Figure 3: The left column is for a uniform distribution ofa and the right column is for a linear distribution ofa. The
rows are forγ = 1.2, 1.8, and 2.2, respectively
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4 Discussion

Other investigations have determined the close binary fraction for various spectral types. Duquen-

noy & Mayor (1991) found that5.6% of G stars are binaries witha < 0.4 AU, while Blake et al.

(2010) found that2.5% of late-M and L stars are binaries witha < 1.0 AU. Figure 4 summarizes

these results. Note that the value given by Blake et al. (2010) must significantly overestimate for

the fraction of late-M and L stars which are binaries witha < 0.4 AU as it also includes binaries

with 0.4 AU < a < 1.0 AU. It is thus apparent that the close binary fraction decreases with

decreasing primary mass. While others have noted that the total binary fraction decreases with

decreasing primary mass, it has not been previously shown that the same holds for the close binary

fraction.

Figure 4: The values for the close binary fraction determined by Duquennoy & Mayor (1991), Blake et al. (2010), and
this paper as a function of mass. The error bounds on my value give the1σ uncertainty in the close binary fraction
that I found. Error bounds are not available for the value given by Duquennoy & Mayor (1991) and as I am using the
value provided by Blake et al. (2010) as an upper limit, an error bound is not applicable.

The current understanding of star formation is that stars form in small-N clusters, multiple

systems containingN ≥ 3 stars, which are then broken apart by two processes, dynamical decay

and dynamical destruction (Goodwin et al. 2007). In dynamical decay, due to the instability of

multiple systems, a member of the system is ejected on a relatively short time scale. Anosova

(1986) showed that in the vast majority of cases, the star ejected is the least massive of the stars

in the system. In dynamical destruction, interactions withother stars in the star cluster disrupt

binary stars; however, this occurs on a far longer time scalethan dynamical decay (Goodwin et al.
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2007). Note that the previously observed correlation between mass and the total binary fraction

supports both of these theories. Due to the preferential ejection of lower mass stars from systems

by dynamical decay, it follows that one would expect a low mass star to have a higher fraction of

single stars and a corresponding lower fraction of binary stars while low mass star binaries would

also be more likely to undergo dynamical disruption due to interactions with more massive stars in

the star cluster which also leads to a lower binary fraction.

However, if I consider the previous results that the total binary fraction is lower for lower mass

stars and that the peak of the semimajor axis distribution isat a lower values ofa for lower mass

stars (Duquennoy & Mayor 1991, Fischer & Marcy 1992, Allen 2007) along with my result here

that the close binary fraction is lower for low mass stars, I am then able to conclude that dynamical

destruction alone cannot account for the observations and dynamical decay or some other process

must play an important role in star formation. Heggie (1975)and Hills (1975) found that while

dynamical destruction disrupts loosely bound binaries, itactually results in close binaries such

as those that I considered here to become even more tightly bound. Therefore, if dynamical de-

struction is the only process governing star formation, then it follows that the close binary fraction

should be constant as a function of mass. This contradicts the result that I obtained here that the

close binary fraction is smaller for low mass stars than for more massive stars. Thus, it follows that

some process other than dynamical destruction serves an important role in star formation. This

could be dynamical decay or some other yet unknown process.

Fischer & Marcy (1992) also determined the close binary fraction for a < 0.4 AU. In their

sample of 62 objects, they detected 1 object and after correcting for their detection efficiency,

found the close binary fraction to be1.8+1.8
−1.8%. Clearly, a sample that includes only one detection

results in a very imprecise determination of the close binary fraction, but it is worth noting that my

results agree with those of Fischer & Marcy (1992) to within their error.

This analysis is distinct from previous works on the binary fraction in the sample that I consider.

Previous works such as Duquennoy & Mayor (1991), Fischer & Marcy (1992), and Blake et al.

(2010) have considered small samples in which each object was observed a large number of times
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with instruments capable of very high radial velocity precision. Here I consider a far larger sample

with a lower number of observations per object that was observed at significantly lower precision.

Despite this limitation, I still was able to obtain interesting results. This suggests that, in the future,

large scale surveys such as the SDSS can be used in the place ofsamples observed specifically to

determine the binary fraction.

5 Conclusions and Future Work

I have determined the close binary fraction (a < 0.4 AU) of M stars to be3.1+0.6
−0.9%. By comparing

this result to the close binary fraction of G stars and ultracool dwarfs (late-M and L dwarfs), I have

shown that the close binary fraction is a decreasing function of mass. While it has previously been

shown that the total binary fraction is a decreasing function of mass, this result had not previously

been shown for the close binary fraction.

It would be intriguing to observe both the 22 objects in the sample with2 d ≤ ∆t ≤ 30 d that I

found to be binary stars and the 15 stars in the sample with0 hr ≤ ∆t ≤ 4 hr that I found to have

very large∆RV values. Tables 2(a) and 2(b) give the right ascension, declination, i magnitude,

and the value ofx computed using Equation 5 for the 22 detected binaries and the 15 objects with

abnormally large∆RV values, respectively. It would also be valuable to conduct ameta-analysis

of this data set together with the data sets provided by Blakeet al. (2010) and Allen (2007). This

would allow me to determine the binary fraction for a larger range ofa.

Future large scale spectroscopic surveys that provide moreprecise data than that of the SDSS

will allow for more accurate determinations of the close binary fractions and will allow for the

extension of this method to binaries with separations larger thana = 0.4 AU. Additionally, the

close binary fraction of stars of later spectral types remains relatively poorly constrained. A large

sample of more precise data would allow for an analysis similar to that conducted here to be carried

out on L stars.
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Table 2: The left and right subtables give the right ascension, declination, i magnitude, and the value ofx calculated
using Equation 5 for each object in the sample with2 d ≤ ∆t ≤ 30 d that I detected as a binary and the objects in the
sample with0 hr ≤ ∆t ≤ 4 hr for which∆RV > 20 km/s, respectively.

RA DEC i x
312.19107 0.667030 17.47 47115.1
343.70959 -10.167570 17.17 17300.3
248.06541 0.988510 16.66 24150.0
127.61649 45.793491 17.33 13447.2
175.21191 53.384460 16.65 12511.2
17.66198 -1.235980 17.31 12088.3
17.72551 0.874290 16.54 14004.6
5.34449 -0.886580 17.07 13678.3

248.50588 0.836120 16.87 14091.3
321.44168 -6.149620 16.12 16083.4

5.61987 -1.135260 16.59 12455.9
11.94934 -0.764040 17.02 16743.2

116.11788 19.265209 17.47 70133.7
116.69219 28.441660 17.55 11926.7
184.93391 26.133289 16.13 12320.1
175.12529 15.708770 16.18 47315.8

4.69498 0.043800 17.41 20002.2
162.62589 42.247631 16.44 23621.8
164.31570 43.162769 16.33 23955.8
332.20187 0.069430 17.12 23225.4
177.85146 37.331612 16.37 13815.2
132.17156 23.347710 16.34 91953.5

RA DEC i x
34.659969 0.829670 16.98 16232.7

127.13995 34.258789 16.79 14789.3
134.84064 37.196651 18.19 15016.6
118.18209 25.824551 17.39 15240.2
237.20148 36.467701 17.04 16921.6

7.93530 0.509350 17.49 13935.1
248.93524 24.508989 16.78 13007.9
248.48320 29.623631 16.98 12527.1
193.78691 32.147221 17.04 9684.0
247.58414 30.881821 16.62 19982.4
218.85271 23.380430 16.97 16687.1
169.19923 29.767429 16.24 14342.1
111.67760 41.712002 16.64 14201.5
172.48730 31.313780 16.78 83841.9
140.93979 22.409000 16.56 47684.3
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