APPENDIX B NON-LOCAL-NOON OBSERVING

OVERVIEW: The following summarizes the procedure for using observations not taken at Local Noon:

- Select an observing time within three hours of Local Noon (the "non-Local-Noon" observing time).
- Generate the analemma at this "non-Local-Noon" observing time.
- With reference <u>only</u> to the non-Local-Noon analemma and measured dimensions of the observing apparatus, calculate the alt-azimuth coordinates for all points of the analemma.
- Using the published value for the Observer's Latitude, convert these altazimuth coordinates to Declination and Hour Angle.
- Subtract the Hour Angle of the Sun at the non-Local-Noon observing time from the Hour Angles calculated above.
- Using the published value for the Observer's Latitude, convert the Declination and Hour Angle values to alt-azimuth coordinates; the result is a close approximation to the alt-azimuth coordinates that would have been observed at Local Noon.
- Using these calculated alt-azimuth coordinates, proceed with the four Activities in their prescribed order.

STEP 1: Specify the observing conditions; in this example, we will be using the airport in Kearney, Nebraska:

Latitude: 40° 43' 42.0" N ; Longitude: 98° 59' 56.0" W Local Noon, based on Longitude, calculates as 12:36:00 CST

Returning to the Observing Site at Local Noon during the year is impractical for the Observer; however, the Observer can reliably return at 15:00:00 CST (Local Noon plus 2:24:00).

STEP 2: Generate the Analemma at 15:00:00 CST / 16:00:00 CDT.

STEP 3: With reference <u>only</u> to the analemma and measured dimensions of the observing apparatus, calculate the altitude and azimuth of the Sun for all points of the analemma.

STEP 4: Using the equations for conversion of alt-azimuth coordinates to equatorial coordinates and the published latitude of the Observing Site (STEP 1), calculate the Declination and Hour Angle for all points of the analemma.

STEP 5: Approximate the readings at Local Noon by subtracting the difference between actual time of Observation and time of Local Noon (here, 2:24:00 * 15 ° / clock hour, or 36°) from the Hour Angle calculated in STEP 4 (varies between ~ $32\frac{1}{2}^{\circ}$ and ~ 40°).

This step is an approximation because the Sun's apparent motion in the sky is attributable to two sources:

- (a) the rotation of the Earth about its axis.
- (b) the rotation of the Earth around the Sun, which is seen as motion along the ecliptic; this motion is small when compared to apparent motion due to the rotation of the Earth, and does not significantly effect the results when neglected.

STEP 6: Using equations for conversion of equatorial coordinates to alt-azimuth coordinates and the published latitude of the Observing Site (STEP 1), convert the calculated Local Noon points (Declination from STEP 4 and Hour Angle from STEP 5) to alt-azimuth coordinates.

The four Activities of the Observing Program may now be started in their prescribed order using these calculated Local Noon readings.

Additional Links

Printable Version of this page

Return to Introduction page

Appendix A – Construction of an Enclosure

Appendix C – Unattended Photography

Appendix D – * * * Reserved for Future Use * * *

Appendix E – * * * Reserved for Future Use * * *

Appendix F – Activity #1 (Tilt of Earth's Axis and Observer's Latitude)

Appendix G – Activity #2 (Path of the Sun in the Sky)

Appendix H – Activity #3 (Equation of Time)

Appendix I – Activity #4 (Eccentricity of Orbit)