Lunar Program Observing List

Lunar Observing Program Coordinator:

Nina Chevalier
1662 Sand Branch Rd.
Bigfoot, Texas 78005
210-218-6288
ninalei1950@yahoo.com

The List

The 100 features to be observed for the Lunar Program are listed below. At the top of each section is a space to list the instruments used in the program. After that are five columns: CHK, Object, Feature, Date and Time. The "CHK" column should be used to check off the feature as you observe it. The "Object" column lists the features in Naked Eye, Binocular, and Telescopic order, and tells you what you are observing and when the best time is to observe it. The "Feature" column lists the 100 features to be observed. Finally, the "Date" and "Time" columns allow you to log when you observed the objects. In the last section, we have listed the 10 optional activities, and broken them down as to naked eye, binocular, and telescopic. Also on page 4, we have included four illustrations to help with observing four of the naked eye features.

We certainly hope that you find the Lunar Program useful in helping you become more familiar with earth's nearest neighbor. If after completing this program you would like to do more work in this area, you may contact The Association of Lunar and Planetary Observers.

Julius L. Benton Jr.
ALPO Lunar Recorder
\% Associates in Astronomy
305 Surrey Road
Savannah, Ga. 31410
(912) 897-0951

E-mail:74007.3446@compuserve.com.
Until then, good luck, clear skies, and good observing.

Lunar Program Checklist

Naked Eye Objects

Instruments Used

\qquad

OBJEC"I
[] (Within 72 Hrs of new)
[] (Within 72 Hrs of new)
[] (Within 40 Hrs of new)
[] (Within 48 Hrs of New)

Maria

FEATUKE
Old Moon in New Moon's Arms
New Moon in Old Moon's Arms
Crescent Moon, Waxing
Crescent Moon, Wanıng
Man in the Moon
Woman in the Moon
Rabbit in the Moon
Cow Jumping Uver the Moon

Crisium

Fecunditatis
Serenitatis
Tranquillitatis
Nectaris
Imbrium
Frigoris
Nubium
Humorum
Oceanus Procellarum

DAII
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad -
\qquad

Binocular Objects

$\left.\begin{array}{lll}\text { Instruments Used } & & \\ & \text { OBJECT } & \text { FEATURE }\end{array}\right]$ DATE

[]		Hipparchus	
[]		Albategnius	
[]		Aristillus	
[]		Autolycus	
[]		Maurolycus	
[]	~10 Days old	Plato	
[]		Archimedes	
[]		Ptolemaeus	
[]		Alphonsus	
[]		Arzachel	-
[]		Walter	-
[]		Maginus	
[]		Tycho	
[]		Clavius	
[]		Eratosthenes	-
[]		Longomontanus	-
[]		Copernicus	
[]		Bullialdus	-
[]		Aristarchus	
[]		Gassendi	
[]	~ 14 Days old	Kepler	
[]		Grimaldi	

Telescopic Objects

Instruments Used \qquad

	OBJECT	FEATURE	DATE
[]		Sinus Aestuum	
[]		Lacus Mortis	
[]		Palus Putredinis	
[]		Promontorium Laplace	
[]		Promontorium Heraclides	
[]		Promontorium Agarum	
[]		Montes Alpes	
[]		Montes Apenninus	
[]		Mons Hadley	
[]		Mons Piton	
[]		Mons Pico	
[]		Rupes Altai	
[]		Rima Hyginus	
[]		Vallis Schroteri	
[]		Vallis Alpes	
[]		Rupes Recta (straight wall)	
	Craters		
[]	~4 Days old	Picard	
[]		Furnerius	
[]		Petavius Wall	
[]		Messier/Messier A	
[]		Proclus	
[]		Fabricius	
[]	~ 7 Days old	Plinius	
[]		Mitchell	

Cassini A
Manilius
Gemma Frisius
Davy
Pitatus
Billy
Fra Mauro
Clavius craterlets
Hippalus
Herschel, J.
Schickard
Reiner Gamma

Optional Activities:

Naked Eye:

1. Estimate first quarter phase within eight hours.
2. Estimate third quarter phase within eight hours.
3. Estimate full moon within thirty-six hours.
4. Plot moon's position against the stars for three consecutive days.
5. Compare the size of the full moon on the horizon with the full moon on the meridian using a dime held at arm's length.
6. Find the thinnest phase by which you can read newsprint.

Binocular:

1. Sketch libration - use Mare Crisium or Grimaldi for examples.
2. Sketch a lunar map - use any scale for binoculars only.

Telescopic:

1. Plot the moon's hourly motion against the stars for two hours or more.
2. Measure the height of a lunar mountain - need to calculate the sun's elevation at the mountain and estimate the shadow length - try Mt. Piton.
