

ASTRONOMICAL LEAGUE

A FEDERATION OF ASTRONOMICAL SOCIETIES A NON-PROFIT ORGANIZATION

\star To promote the science of astronomy:
$\star \quad$ By fostering astronomical education;

* By providing incentives for astronomical observation and research;
^ By assisting communication among amateur astronomical societies.

ASTRO NOTES

Produced by the Astronomical League

Note 18: Basic Astronomical Data

Solar System

Planet	AU**	Miles* x106	Sidereal Year	Diameter at Equator (miles)	Mass (Earth =1)	Gravity (Earth =1)	Rotation (days)	Number of Moons
Sun				864,049	332,94 6	27.9	$25-35^{* *}$	
Mercury	0.387	35.9	87.97 d	2160	0.0553	0.38	58.65	0
Venus	0.723	67.	224.7 d	7500	0.815	0.91	243	0
Earth	1.000	92.8	365.26 d	7937	1.000	1.00	1	1
Mars	1.524	141	687 d	4220	0.107	0.38	1.03	2
Jupiter	5.203	483	11.86 y	88,850	317.9	2.54	$0.41^{* *}$	$16^{* * *}$
Saturn	9.529	884	29.5 y	74,900	95.18	1.08	$0.44^{* *}$	$18^{* * *}$
Uranus	19.23	1785	84 y	31,800	14.54	0.91	0.72	$15^{* * *}$
Neptune	30.14	2800	164.8 y	30,800	17.15	1.19	0.67	$8^{* * *}$
Pluto ****	39.81	3700	247.7 y	1430	0.002	0.06	6.39	$2 * * *$

* Mean Distance from Sun
** depends on latitude, equatorial period given
*** moon count of outer planets is classical number; many more have been found by spacecraft observation
**** Pluto was traditionally considered a planet. In 2008, the IAU reclassified Pluto as a "Plutoid" having formerly reclassified it as a "dwarf planet".

Additional Earth Data

Equatorial Diameter: 7937 miles
Polar Diameter: $\quad 7900$ miles
1° of latitude or longitude: 69 miles at the equator, less closer to poles Magnetic North Pole: N76º W101 (near Prince of Wales Isl., NWT, Canada) Magnetic South Pole: ${\mathrm{S} 66^{\circ} \text {, E140 }}^{\circ}$ (near Antarctic coast, south of Australia) Orbital Speed: 18.5 miles/sec

Solar Data

Mass: $\quad 2 \times 10^{30} \mathrm{~kg} \quad\left(2.2 \times 10^{27}\right.$ tons $)$
Power Output: $3.8 \times 10^{23} \mathrm{~kW}$
Energy Flux at Earth's Orbital Distance: $\quad 1.37$ kW/meter ${ }^{2}$
Solar Wind Speed near Earth:280 miles/sec
Solar Velocity: 12.3 miles/sec -- (toward R.A. $=18.1 \mathrm{~h}$, Dec. $=+30^{\circ}$: E. Hercules)
Stars within 10 Light Years of the Sun

Name	R.A.	Dec.	Distance (light years)	Name	R.A.	Dec.	Distance (light years)
Proxima	14 h 30 m	$-62^{\circ} 41^{\prime}$	4.2				
α Centauri	14 h 40 m	$-62^{\circ} 50^{\prime}$	4.3				
Barnard's	17 h 58 m	$+04^{\circ} 2147$	11 h 03 m	$+35^{\circ} 59^{\prime}$	8.3		
L-726-A/B	6.0	01 h 39 m	$-17^{\circ} 57^{\prime}$	8.4			
Sirius $(\alpha \mathrm{CMj})$	06 h 45 m	$-16^{\circ} 43^{\prime}$	8.6				
Woss 154	18 h 50 m	$-23^{\circ} 50^{\prime}$	9.4				

Milky Way Galaxy

Mass: 10^{12} solar masses
Center: \quad Direction: \quad R.A $=17.8 \mathrm{~h}$, Dec. $=-29^{\circ}$ (in Sagittarius)
Distance: 29,000 lt. yrs.
Diameter: 90,000 lt. yrs.
Velocity: $\quad 370$ miles $/$ sec relative to $3^{\circ} \mathrm{K}$ background radiation toward R.A $=10 \mathrm{~h}$, Dec. $=-20^{\circ}$ (southeast Hydra)

Some Close Galaxies of the Local Group

Name	R.A	Dec	Distance (light years)
Large Magellanic Cloud	05 h 24 m	$-69^{\circ} 45^{\prime}$	163,000
Small Magellanic Cloud	00 h 53 m	$-72^{\circ} 49^{\prime}$	196,000
Leo I	10 h 09 m	$+12^{\circ} 14^{\prime}$	750,000
Leo II	11 h 14 m	$+22^{\circ} 09^{\prime}$	750,000
M31, M32	00 h 42 m	$+41^{\circ} 00^{\prime}$	2.3 million
M33	01 h 34 m	$+30^{\circ} 39^{\prime}$	2.4 million

Most Distant Object Readily Visible in an Amateur Telescope
3C273 R.A $=12 \mathrm{~h} 29 \mathrm{~m}$, Dec. $=+02^{\circ} 03^{\prime}$ (approx $2-3$ billion light years)
(quasar)
(typically requires $10-\mathrm{in}$. or larger telescope)

Compiled from a variety of sources and may not maintain consistent basis for various data items. All coordinates are J2000.

