APPENDIX G
 ACTIVITY \#2 - THE PATH OF THE SUN IN THE SKY

Though several options are available to portray the path of the Sun in the Sky, most will find it easier overall to:

- First, calculate the altitude and azimuth of the Sun at each point of the analemma (Steps 1 through 4, below).
- Second, using the equations for conversion of alt-azimuth coordinates to equatorial coordinates, convert the alt-azimuth coordinates to Declination and Hour Angle (Step 5, below).

Step 1: Continue with the coordinate system introduced in Activity \#1:
$>\mathrm{P}(0,0,0)$ at the opening of the enclosure / tip of the gnomon.
$>$ The x-axis as east / west (positive being eastward).
$>$ The y-axis as north / south (positive being northward).
$>$ The z-axis as up / down (positive being upward).
Note that the analemma is in the x / y plane at $z=-h$.

Step 2: Digitize the analemma. This will generally be done by scanning or photographing the analemma. Be sure to allow for the following:
$>$ The location of the point directly below the opening of the enclosure / tip of the gnomon ... this point will be referred to as $\mathrm{P}(0,0,-\mathrm{h})$. Accurate measurement of distances relative to this point is crucial to the calculations which follow.
$>$ If photographing the analemma, take the image from directly above (i.e., perpendicular to) the analemma using as long a focal length as possible
to minimize distortion.Wide-angle lenses should not be used. The "long dimension" of the analemma should be aligned with the width of the camera's field of view as well as possible.
$>$ Scaling the scan / image must be included, so conversion from locations in the image to measured distances can be made.

Step 3: Translate the zero-point on the image from Step 2 (generally the upper left corner) to $\mathrm{P}(0,0,-\mathrm{h}) \ldots$ i.e., the point directly below the opening in the enclosure / tip of the gnomon in the coordinate system described in Step 1.

When translating the origin of a coordinate system to a point having the coordinates $\mathrm{P}(\mathrm{h}, \mathrm{k})$ within that system, then the coordinates of a point $P(x, y)$ will change to:

$$
\begin{aligned}
& x^{\prime}=x-h \\
& y^{\prime}=y-k
\end{aligned}
$$

where: x and y refer to the original (pre-translation) coordinates. x ' and y ' refer to the post-translation coordinates.

Note: This relationship assumes an x-positive to the right / y-positive up orientation. If the image's coordinate system has different orientation, corrective measures will have to be taken.

Step 4: For each point of the analemma, calculate the altitude-azimuth coordinates:
> Calculate new x and y values based on translation of the axes to the point on the floor of the enclosure directly below the opening ($\mathrm{P}(0,0,-\mathrm{h})$).
$>$ Provide for calculation new x and y values based on the rotation of the axes around the z-axis. (This is a correction for magnetic deviation, improper alignment of the observing apparatus along true north / south, or if photographing the analemma, not properly aligning the analemma within the camera's field of view.) Initially, this angle of rotation will be set to 0° (i.e., not rotated).

When rotating a coordinate system an angle α (alpha) around its origin,

$$
\begin{aligned}
& X=x^{*} \cos (\alpha)+y^{*} \sin (\alpha) \\
& Y=-x^{*} \sin (\alpha)+y^{*} \cos (\alpha)
\end{aligned}
$$

where: x and y refer to the original (pre-rotation) coordinates. X and Y refer to the post-rotation coordinates.

Note: α is positive in the counter-clockwise direction.
$>$ Calculate the angle off the $x=0$ plane (a.k.a., the $y /, z$ plane, which contains the Celestial Meridian). Numerically, it is the $\arctan (x / y)$; above the opening, it is the angle, ϕ (phi). Note that the Sun's Azimuth is 180° $+\phi$.
$>$ Calculate the angle off the x, y ("horizontal") plane. Numerically, it is $\arctan \left(\mathrm{h} / \mathrm{sqrt}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)\right.$); above the opening, it is the angle, θ (theta). Note that this is also the Sun's Altitude.

Step 5: Calculate the Declination and Hour Angle for the Sun at each reading in the analemma. The equations are presented in Practical Astronomy With Your Calculator, by Peter-Duffett Smith §26.

$$
\begin{gathered}
\sin (\delta)=\sin (a)^{*} \sin (\varphi)+\cos (a)^{*} \cos (\varphi)^{*} \cos (A) \\
\cos (H)=\left(\sin (a)-\sin (\varphi)^{*} \sin (\delta)\right) /\left(\cos (\varphi)^{*} \cos (\delta)\right)
\end{gathered}
$$

where, $a=$ altitude of the Sun (from Step 4, above).
A = Azimuth of the Sun (from Step 4, above).
$\delta=$ declination of the Sun.
$\varphi=$ Latitude of the Observer (from Activity \#1).
$\mathrm{H}=$ the Hour-Angle between the Sun and the Meridian.
In the above equation for $\cos (\mathrm{H})$, the values of H will always be positive. To determine the sign of H use the following equation:

$$
\sin (H)=-\sin (A) \cos (a) / \cos (\delta)
$$

For a good description of how the above equations are derived see the following link: http://star-www.st-and.ac.uk/~fv/webnotes/chapter7.htm

Step 6: Plot the Declination (vertical axis) vs. Hour Angle (horizontal axis).

Additional Links

Printable Version of this page
Return to Introduction page
Appendix A - Construction of an Enclosure
Appendix B - Overview of Non-Local Noon Observing
Appendix C - Unattended Photography
Appendix D - ** * Reserved for Future Use * * *
Appendix E - * * * Reserved for Future Use * * *
Appendix F - Activity \#1 (Tilt of Earth's Axis and Observer's Latitude)
Appendix G - Activity \#2 (Path of the Sun in the Sky)
Appendix H - Activity \#3 (Equation of Time)
Appendix I - Activity \#4 (Eccentricity of Orbit)

