Laud of the Rings—Frodo Never Saw These
2014 National Young Astronomer Awards
Deep Sky Objects: The Dumbbell Nebula
Christiaan Huygens—So Many Contributions
GREEN BANK STAR QUEST XI

JUNE 25, 26, 27, 28

The Dream Continues

Join the Celebration of Optical and Radio Astronomy
Register now to be a part of Star Quest Family 2014!

Keynote Speaker: Dean Regas
Outreach Astronomer for the Cincinnati Observatory, TV Host, Contributing Writer
Sky & Telescope, Astronomy Magazine

Presenters and Activities: Dr. Sue Ann Heatherly,
Dr. Michelle Shinn, Mark “Indy” Kochte, Dr. Loren Anderson and many more!

- Optical & Radio Astronomy Presentations
- Free shower accommodations available
- Bunk house for rent, showers, reserve soon, limited space is available
- Dark West Virginia skies in the radio-quiet zone
- Kids Activities, Great Vendors, Gift Shop
- Movies, Large Raffle, and First Class Presenters
- Meet Green Bank Staff Radio Astronomers
- Learn to operate a 40ft radio telescope
- Radio Jove operation instruction
- High-Tech Tours of Green Bank NRAO
- NASA Multimedia
- Nearby West Virginia tourist attractions
- Rain – No Problem. All events are held indoors

4-day registration is $85 per participant, includes campsites, showers, and access to all events. Children under 18 admitted free as long as they are accompanied by a registered adult.

For other registration options, and details visit our web-site www.greenbankstarquest.org
Green Bank Star Quest, PO Box 1862, Clarksburg, WV 26301

For questions only call: (304) 745-4842

Sponsored by: Central Appalachian Astronomy Club, National Radio Astronomy Observatory and Kanawha Valley Astronomical Society
The Astronomical League Magazine

Vol. 66, No. 3 • ISSN: 0034-2963 • June 2014

A FEDERATION OF ASTRONOMICAL SOCIETIES
A NON-PROFIT ORGANIZATION
To promote the science of astronomy
• By fostering astronomical education,
• By providing incentives for astronomical, observation and research, and
• By assisting communication among amateur astronomical societies.

Astronomical League National Office:
9201 Ward Parkway, Suite 100, Kansas City, MO 64114

Contents

4 President’s Notes
5 International Dark-Sky Association
6 Reflector Mail
8 Deep-Sky Objects
 The Dumbbell Nebula
10 So Many Suns; So Many Earths
 A Tribute to Christiaan Huygens
12 Laud of the Rings
 Frodo Never Saw These
14 Set Some Observing Goals This Year
15 The League’s Observing Programs
16 NYAA Winners/50 Years of the League’s Newsletter
19 Urban Observing
 Want to Observe in the City? No Problem!
20 Observing Awards
22 Coming Events

Our cover: David Doctor, member of the Astronomical Society of Las Cruces, took this image of the Crab Nebula (M1) from Doña Ana County, New Mexico, about 10 miles east of Las Cruces. He used a 10-inch Astro-Tech Ritchey–Chrétien f/8 on a Paramount mount. The camera was an SBIG ST-XME, 1530 x 1020 pixel array for the imaging chip with 9-micron pixels, TC-237 guide chip. Image scale is 0.93 arcseconds per pixel with this system. An SBIG CPS filter wheel held Astronomik E-Series LRGB filters and an Astronomik 14 nm H-alpha filter. The focuser was a 2.5-inch MoonLite CSL with a camera rotator operating on the ASCOM Platform. Images were captured over four weeks from December 29, 2013, through January 26, 2014. Calibration was achieved with dark frames (matched for time, temperature, and binning) and sky flats (matched for rotation using the null point in the twilight sky). Processing, including calibration, stacking, and post-processing, was done in PixInsight. The H-alpha channel was combined with the red channel.

To our contributors: The copy and photo deadline for the September 2014 issue is July 15. Please send your stories and photos to our magazine editor, Ron Kramer (editor@astroleague.org), by then.

The Astronomical League invites your comments regarding the magazine. How can we improve it and make it a more valuable resource for you, our members? Please respond to the editor’s email address above.
Winter Star Party 2014

It was my honor to represent the Astronomical League at the Winter Star Party in February.

What a treat to have such good observing conditions and warm temperatures in the middle of winter. Thanks to the entire staff of the Southern Cross Astronomical Society and the Winter Star Party for their wonderful hospitality.

I enjoyed renewing old friendships and making new ones, including a friendship with the founder of the Winter Star Party, Tippy D’Auria.

It was a pleasure to join several of the League’s longtime supporters and Winter Star Party attendees for lunch at the No Name Pub in Big Pine Key. These included (left to right in the photo below) Paul and Cathy Anderson, members of the Tucson Amateur Astronomy Association and longtime goodwill ambassadors for amateur astronomy; Terry Mann, immediate past president of the Astronomical League and a fabulous astrophotographer; Dr. Barbara Harris, an active member of AAVSO, who has done extensive research with exoplanets; myself; Scott Roberts, founder and CEO of Explore Scientific; and Dr. Don Parker, who has studied the Solar System for over fifty years, lectured at countless events across the country, and is currently assistant coordinator (CCD/video imaging) for the Mars section of the Association of Lunar and Planetary Observers (ALPO).

International Memberships

For the past several months, the League has been entertaining the idea of extending membership to include international societies. In response to requests from several international groups, we have looked at cost-effective ways of offering this service, considering the higher rates for international postage. The introduction of an electronic version of the *Reflector* magazine has made this more practical from an economic point of view. One of the major reasons most of these groups have requested League membership is the vast array of observing programs that we offer. Other issues remain to be sorted out, but we are close to starting a trial with one of the groups.

League Regional Leader Visits the National Office

It was my pleasure recently to welcome Wayne Green, chairman of the Mountain Astronomical Research Section (MARS) region, to the League’s national office in Kansas City. While in town, Wayne, his wife Christine, and I enjoyed some fine barbeque at one of the area’s best-known establishments.

Thanks to Wayne and all our fine regional officers who continue to make the League stronger.

ALCON 2014 in San Antonio

The dates are July 10–12. The planning is coming along very nicely for ALCon 2014, the annual convention of the Astronomical League. The League and the San Antonio Astronomical Association have an exciting conference planned in conjunction with the 40th anniversary of the SAAA. A special lodging rate of $99 per night is available for our guests at the convention hotel, the Hilton San Antonio Airport.

Great Skies!

Carroll Iorg
Good Lighting Is Easy
By Bob Gent

While many astronomers care deeply about preserving our magnificent night skies, the issue of light pollution reaches far beyond that. Light pollution is caused by aiming lights into the sky, blinding people with glare, or by leaving lights on when and where they are not needed. When we allow bad lighting at night, we waste an enormous amount of energy and endanger our own health and safety as well as those of many animals. Fortunately, good lighting is easy.

Crime—Bright lights at night can give us a false sense of security. What we need is better situational awareness coupled with better light designs. Most crime actually occurs during the day, and nighttime lighting by itself does not ensure safety. A recent U.S. Department of Justice report to Congress concluded that improved nighttime lighting may not deter crime, "particularly since we do not know if offenders use lighting to their advantage. . . . In short, the effectiveness of lighting is unknown." Many of us are afraid of the dark, and we feel safer with bright lights. But are we really? Do criminals need light to see to commit crime? Could they, too, be afraid of the dark?

Safety—Bright lights cause glare that decreases visibility. When lights shine in our eyes we can’t see much except the light source. We can’t see the steps or handrails leading to a doorway. We can’t see the bad guy lurking behind the light. And you know what it’s like to have drivers shine their high-beams into your eyes. It takes awhile to recover your night vision. This doesn’t make you safer—quite the contrary.

Human Health—For billions of years, life on Earth evolved with day and night. Now, we are turning the night into day with unintended consequences. Ongoing research indicates there may be serious impacts on human health from overly bright lights. When we sleep with lights around us, or invading through our bedroom window, we suffer something called melatonin suppression. This adversely affects our circadian rhythm—our sleep pattern—and our immune system. Medical doctors are also studying the link between cancer and melatonin suppression from lights at night.

Wildlife—Light pollution also adversely impacts many forms of nocturnal wildlife. Florida’s sea turtles have been facing a major threat from bright lights. Endangered sea turtles emerge from the surf to deposit eggs in sand nests; later, tiny hatchlings struggle from their nests to return to the ocean. The turtles instinctively look for moonlight reflecting off the ocean to guide them to the water, but can mistake man-made lights for moonlight, crawl away from the ocean, and die. Similarly, many species of birds, especially small insect-eaters, migrate at night. Guided in part by starlight, they are attracted to lights shining from skyscrapers, broadcast towers, lighthouses, monuments, and other tall structures. Some birds either flutter about until they drop from exhaustion, or actually collide with the lit structure and die.

Property Rights—Light trespass is another serious problem. Light at night can be as offensive as neighbors driving across your yard or parking on your property. When a person aims bright floodlights at their neighbor’s yard, light invades the neighbor’s property and destroys a good night’s sleep as well as the neighbor’s ability to see the sky.

Preserving Our Heritage—Light in the sky is called sky glow. It’s a bright nighttime dome over most cities. It destroys our view of the Universe. Go outside on a cloudless night. Under a dark sky, you can still see the structure, shape, and density of our own galaxy, the Milky Way. This is a privilege that very few Americans still have. It is priceless. Across the country and around the world, people are losing touch with the night. This means our children, and generations to come, are in danger of losing their God-given right to experience the grandeur of the Universe. That would be a tragedy! Let’s not let that happen.

About the author: Lt. Col. Bob Gent is a retired U.S. Air Force space systems officer, and he is the past president of the Astronomical League, an educational federation of more than 250 astronomical societies and 15,000 members. He is also the past president of the board of the International Dark-Sky Association. IDA has thousands of members from over 70 countries. He and his wife Terrie built and operate the Cochise Skies (Astronomical) Observatory in Mountain Shadows, Arizona.
Dear Editor:

Hello. My name is Paolo Morini, I live in Italy and I am a member-at-large of the Astronomical League. I write to you to give an answer to the letter of Sue Wheatley, published in the December 2013 Reflector.

In my opinion, astronomy has become boring only to elder amateurs: after the fifth or sixth telescope, they realize that nothing can give the thrill of the first observation of the Moon and Saturn, and they become tired of plugging in cords and switching eyepieces.

Another bug is the following: it’s hard to have fun with high-tech astronomical gear without having the right background. How can you picture yourself having fun taking spectra, measuring cloud speeds on Jupiter and double star relative motion, if you are not an astronomer or something similar?

Years ago, at an Italian astronomy fair, a very famous amateur astronomer, who was quite advanced in age, looking at beautiful telescopes in the 16- to 24-inch range told me, “We can observe much better things that are very hard for us to understand.”

When I was a teenager, some people—a Franciscan friar, an English teacher, and a chemist—spent evenings and evenings showing us to understand.

I think that the best thing to be done, as adult amateur astronomers, is to meet people, especially young people, and offer them the chance to see a bit of Universe and think about what they are looking at.

The main reason I became a member of the Astronomical League is because here there is a whole world of clubs, planetariums, and organizations involved in astronomy popularization and outreach.

Best Regards, Paolo Morini
Via Valeri 9, 48121 Ravenna, Italy

Space Place Prime is now available on Android!

A spinoff of NASA’s popular kids’ Space Place website, spaceplace.nasa.gov, Space Place Prime has timely, educational, and easy-to-read articles and activities from the Space Place and other science websites, the latest and most impressive NASA space and Earth imagery, and a wide array of informational movies. There is plenty to keep everyone occupied and informed. Content is updated daily. The Space Place Prime Android app can be found at tinyurl.com/lyqme53.

Attention ALCors

Annual society ballots and dues statements were emailed in April from our national office. Please return your ballot by June 15 to the national office. Please return your ballot by June 15 to the national office. Dues payments should be sent separately to the treasurer by June 30.

The Sky This Week

To find out what’s happening in the sky this coming week, take a look at, “The Sky This Week” on Astroleague.org.

Produced by our own Vern Raben, this weekly five-minute program covers the moon, visible planets, comets, and interesting stellar features.

Why not tune in this week?
You Can Count on Us!

The OPT Accounting Department

OPTtelescopes.com | 800.483.6287

The World’s Most-Loved Telescope Has Evolved

NexStar EVOLUTION

The First Schmidt-Cassegrain Telescope with Fully Integrated WiFi

Slew your telescope to all the best celestial objects with a simple tap of your smartphone or tablet with NexStar Evolution. Connect your device to the telescope’s built-in WiFi network and explore the universe with the Celestron planetarium app for iOS and Android.

Celestron’s Most Innovative Technologies Plus New Upgrades

- Free app includes SkyAlign alignment procedure
- Internal lithium-ion battery for 10 hours of continuous use
- Worm gears reduce backlash and enhance tracking performance
- Choose a 6-, 8-, or 9.25-inch optical tube with StarBright XLT coatings and Fastar compatibility
- Includes USB charging port, adjustable accessory tray light, and improved tripod

DISCOVER MORE AT celestron.com
The Dumbbell Nebula, M27, is perhaps the best planetary nebula visible in northern skies. Shining at magnitude 7, the Dumbbell Nebula is one of the brightest planetary nebulae. The discovery of M27 is credited to Charles Messier who recorded seeing it in 1764. M27 was the first planetary nebula to be discovered.

The Dumbbell Nebula is relatively easy to find. Although it is located along the Milky Way in the constellation Vulpecula, I usually star hop to it from the constellation Sagitta. To find M27, locate Gamma Sagittae, the head of the little arrow. M27 is 3º north of Gamma, about the same span as the shaft of the arrow—Delta to Gamma Sagittae—not counting the arrow’s tail.

Planetary nebulae were named for their fairly round, planet-like appearance in the eyepiece, and many of the brighter ones are tens of arcseconds to several arcminutes in diameter, in the same angular size range as the planets Jupiter and Saturn. A planetary nebula is essentially the outer layers of a star that have been blown off by the intense radiation pressure from the star’s core, after the star exhausted its hydrogen fuel and heated up tremendously. Radiation from the remaining star, now fusing helium, excites the atoms in the expanding shells of stellar gas causing them to glow: a planetary nebula is born.

The Dumbbell Nebula has a diameter of about 8 arcminutes. It lies approximately 1400 light years away and has a real diameter of approximately 3 light-years. M27 has two bright, triangular lobes on its north and south sides, which give rise to its name. The nebula is expanding at a rate of about 2.3 arcseconds per century, and it is between 10,000 and 15,000 years old. The central star (yellow arrow) is a white dwarf. It is 5% of the Sun’s diameter and 56% of the Sun’s mass. The star shines at magnitude 13.5. Our Sun may be similar in size if it reaches the same stage during its demise.

M27 can be seen in binoculars under ideal conditions, but it looks like a tiny fuzzy spot. Small telescopes begin to show the two bright lobes, while larger scopes reveal bright and dark regions within the lobes. Under the best conditions with high quality optics, the central star might be spied using 4- to 6-inch telescopes. But I would recommend using an 8-inch or larger piece of glass to have the best chance of glimpsing it.

I took the accompanying image of M27 with the 20-inch Ritchey–Chrétien Cassegrain telescope at the U.S. Coast Guard Academy astronomical observatory in Stonington, Connecticut. The exposure was 20 minutes using an SBIG ST-2000XCM CCD camera. The brightest star in the field of view, just on the visible edge of the nebula below the three o’clock position, is magnitude 11.2. The faintest stars in the image are magnitude 18. The bright red and blue hues in the image are close to the true colors emitted by the nebula’s gases, but our eyes cannot perceive color (with the occasional exception of green) at the eyepiece at these low light levels. Regardless, the view is indeed rich, especially at higher magnifications.

The star in the image marked with the blue arrow is a variable star. My image caught it near its maximum brightness. At minimum, the star is several magnitudes fainter. Based on the many Dumbbell Nebula images I have examined, I would guess its range falls between magnitudes 13.5 and 16. For some observers, tracking this challenging variable star may be another reason to keep returning to this beautiful planetary nebula.

Staunton River Star Party - Fall 2014

October 20–26, 2014

Staunton River State Park
Scottsburg, VA (near South Boston)

For more information or to register: www.stauntonriver-starparty.org

Full Party: $70 WKend: $35

Sponsored by: CHAOS
July 10-12, 2014 • San Antonio, Texas
The Stars are Big and Bright, Deep in the Heart of Texas

Location: Hilton San Antonio Airport
Host Organizations: San Antonio Astronomical Association, Astronomical League

• Plus - ALPO Annual Meeting!

Accommodations...
Hilton San Antonio Airport
• Be sure to ask for the Astronomical League rate
• http://www.sanantonioairport.hilton.com
• Telephone: 1.888.728.3031

• Thursday Night StarB-Q and Social — Meet amateurs from other clubs!
• Saturday Night Awards Banquet
• Plenty of restaurants and shopping nearby

San Antonio Attractions:
• The Alamo
• Paseo del Río (Riverwalk)
• Sea World San Antonio
• Six Flags Fiesta Texas
• San Antonio Missions National Park
• San Antonio Zoo
• San Antonio Botanical Garden
• Japanese Tea Garden
• Tower of the Americas
• Witte Museum
• San Antonio Museum of Art
• McNay Art Museum
• Natural Bridge Caverns and Wildlife Ranch
• Institute of Texan Cultures
• Menenger Hotel
• Spanish Governor’s Palace

Excursions around San Antonio:
• Friday Night Paseo del Río

Sign up for the bus — Avoid driving aggravations and parking fees

Speakers...including
Dr. Don Olson, Celestial Sleuth
Don Pettit, Astronaut
Forrest Mims, Atmospheric Science
Stephen Ramsden, Solar Outreach

Register before May 21
AND RECEIVE A FREE
ALCon 2014 Lapel Pin!

Register at:
• ALCon2014.ASTROLEAGUE.ORG

San Antonio Skyline

Mission San Jose

Hemisfair Park
Christiaan Huygens was born in 1629 to a prominent Dutch family. As was the custom for wealthy families at the time, young Huygens studied at home with a variety of tutors. After completing studies at the University of Leiden and the College of Orange in the southern Netherlands, Huygens had a short career as a diplomat, but then returned to his family's home in The Hague to pursue mathematical and scientific research. Huygens developed an interest in telescopes and studied spherical lenses for several years before grinding his own glass mirrors in 1654, at the age of 25. Several decades earlier, Galileo Galilei had first turned a telescope skyward.

In 1655, Huygens pointed his telescope toward Saturn with the goal of observing what we now know to be the planet’s rings. However, in addition to the rings, Huygens saw a bright point of light near the planet. He had discovered Saturn’s first moon, now known as Titan. Johannes Hevelius, a Polish astronomer, had observed Titan years earlier, although he had mistaken it for a star. Huygens conveyed his discovery of Titan to mathematicians in Paris, including his friend Ismael Boulliau, who would later act as a confidant and mentor to young Huygens. Several more years would elapse until Saturn’s next largest moons—Iapetus, Rhea, Tethys, and Dione—were discovered by Giovanni Domenico Cassini.

Huygens continued his observations of Saturn, now using a 50-power refracting telescope. In 1656, he published a short pamphlet documenting his hypothesis regarding the rings of Saturn: “a thin, flat ring, nowhere touching, and inclined to the ecliptic.” When Huygens shared his ring hypothesis with Boulliau in Paris, his mentor replied: “You establish your hypothesis very well, and it proceeds regularly, provided you can persuade how this ring can become invisible however small its consistent thickness. I know that nature has been able to make a ring around this said body, and that by [the same] reason that the Earth is suspended; in the open air, a ring can also be suspended: nevertheless, you still need some experiments in order to demonstrate absolutely that which you propose.”

Support for Huygens’s ring hypothesis came in the form of the Accademia del Cimento (Academy of Experiment), an Italian scientific society founded by Prince Leopoldo de’ Medici. Members of the Accademia del Cimento constructed a model of Saturn that included rings according to Huygens’s theory and placed the model at the end of a long hallway. The society members then observed the system using telescopes. The Accademia del Cimento ultimately concluded that Huygens’s ring hypothesis was consistent with their observations of the model.

Around the same time, Huygens studied probability theory and wrote On Reasoning in Games of Chance in 1657. He postulated expected values and later expanded his study, with...
his brother Lodewijk, to estimates of human life expectancies.

Two years later, in 1659, Huygens published *Systema Saturnium*, in which he calculated the orbital period of Titan (15 days, 23 hours, and 13 minutes) and presented evidence for his hypothesis that Saturn was surrounded by a ring. Huygens dedicated the manuscript to Prince Leopoldo de’ Medici, the founder of the Accademia del Cimento. *Systema Saturnium* ends with Huygens’s observations of all the planets in the Solar System known at the time (Mercury, Venus, Earth, Mars, Jupiter, and Saturn) and his calculations of their sizes relative to the Sun.

In 1675, Huygens’s model of a thin, flat ring around Saturn suffered a blow from observations by Cassini. A gap in the supposedly solid ring had been discovered and Cassini purported that the ring was composed of numerous small satellites. Over one hundred years later, treatises by Pierre Simon Laplace and James Clerk Maxwell showed that solid rings orbiting Saturn were mathematically unstable. However, it was Huygens’s pioneering observations that helped to prompt the study of Saturn’s rings, finally revealing the true nature of the “ears” that Galileo has noted decades earlier.

Huygens also studied periodic motion and was the first person to derive the period of an ideal pendulum, where the mass of the cord suspending the weight is assumed to be massless. He deduced the formula that is now familiar in high school textbooks:

\[T = 2\pi \sqrt{\frac{l}{g}} \]

where \(T \) is the period of the pendulum, \(l \) is the length of the massless cord, and \(g \) is acceleration due to gravity. Two pendulums, suspended from cords that differ in length by a factor of four, will have periods that differ by a factor of two (regardless of the masses of the pendulums themselves).

Near the end of his life, Huygens compiled his *Cosmotheoros*, in which he discussed the possibility of extraterrestrial life. In a passage that seems prophetic given the over one thousand extrasolar planets currently known, Huygens suggests that a multitude of planets populate the Universe:

“What a wonderful and amazing Scheme have we here of the magnificent Vastness of the Universe! So many Suns, so many Earths, and every one of them stock’d with so many Herbs, Trees and Animals, and adorn’d with so many Seas and Mountains! And how must our wonder and admiration be encreased when we consider the prodigious distance and multitude of the Stars?”

Cosmotheoros was published posthumously in 1688, three years after Huygens’s death.

Nearly 300 years later, Huygens’s name would be carried by a space probe bound for Titan. The Huygens probe, a joint project completed by NASA, the European Space Agency, and the Agenzia Spaziale Italiana (Italian Space Agency), launched in 1997 and landed on Titan in 2005. Since the surface conditions of Titan were thought to include both solid ground and oceans of methane and ethane, Huygens was designed for an amphibious landing. Signals from Huygens were sent for about 90 minutes following touchdown and were detected by ground-based telescopes on Earth. Huygens beamed back images of channels, thick haze, and a clay-like material on the surface. The Huygens probe holds the honor for the most distant landing on another Solar System object.

Christiaan Huygens’s impact on science has been widespread and fundamental. His contributions to Solar System studies, physics, and probability will continue to form the basis of future investigations.

Katherine Kornei is the Youth Director of the Rose City Astronomers in Portland, Oregon, where she works as a science educator and writer. She received her Ph.D. in astronomy from the University of California, Los Angeles in 2012.
O, for a muse of light
The brightest invention of Heaven...

The Universe is in constant change
Stars shimmer and sacrifice
For the alter of our generation
Galaxies all are whirled
Across a stage of mirror plays
In time we see what was
And now is then
Shall verity in rooted thought
The sway of light unearth
What scene is spent

No thing in our Cosmos ever stays the same. Even black holes evaporate. Powerful forces create a place where not everything is what it seems; allusion to order, and fiction to form. We can, from our unique perspective in space and time about the panoply that crowns our sky, imagine airy rings. Let’s journey from the nearest star to lensed and magnified galaxies eleven billion light-years away to see how direct visual observation of these wonders in our telescopes is possible, and how their pursuit repays, with interest, a deepened understanding.

One of the closest astronomical objects to us that displays a “ring” under special circumstances of geometry and alignment is our Sun, bestowing the most magnificent display of natural beauty in the heavens, a total solar eclipse. Its corona, or outer atmosphere, cannot be seen in normal daylight, as its relative faintness compared to the photosphere makes it invisible until the Moon’s silhouette reveals its diaphanous diapason as a ring. The last bit of our Sun’s face lights a single alpine valley, sparkling like the engaging offering that it is, and invites us to evanescence. My wife and I have been fortunate to see all four solar eclipses to which we have traveled.

Many observers mark Saturn and its glorious rings as the most beautiful object visible in a telescope, but half a century was needed after their discovery to appreciate the subtleties of orbital mechanics and presentation they proffer. The Cassini spacecraft has given us images of this system so detailed and varied as to keep us in study and appreciation for decades.

Sailing outside our solar system, the objects best known for toric shapes are planetary nebulae, and products of stars similar in mass to or slightly more massive than our Sun. Enriching their surroundings with heavy elements, the variety on display is partly related to the binary nature of some of their central stars, which, along with magnetic forces, constrain their outflows into hourglasses, cylinders, and spiraling jets. They vary from simply spherical, as with Kronberger 61, to the complex, multilayered structures seen in the Cat’s Eye Nebula.

For the alter of our generation
Galaxies all are whirled
Across a stage of mirror plays
In time we see what was
And now is then
Shall verity in rooted thought
The sway of light unearth
What scene is spent

One of the largest-appearing and nearest planetary rings is the Helix Nebula, NGC 7293. Located in Aquarius, it seems initially more than half the angular size of the full Moon. But it possesses outer layers more than double that size, and under very dark skies I have used large telescopes to observe these faint, capreolate shells, the product of earlier stellar winds, not fully fluoresced by the ultraviolet radiation from the central star. The last two decades have seen extensive study of these epigenous, pre-planetary wreaths whose subtle detail can be noted at the eyepiece using filters that allow the light of doubly ionized oxygen (O-III) to pass, enhancing contrast between their faint outer tendrils and the background sky.

The aptly named Necklace Nebula in Sagitta is the remains of a star whose cinctures were lost in a stellar dance, flung to a diameter of two light-years and set aglow by the intense ultraviolet radiation of the central stars. Known also as PN G054.2-03.4, its denser portions are seen as pearls on the “necklace.” It was visible in my 32-inch scope as an oval elongated east–west and 15 to 20 arcseconds in length, but individual pieces could not be distinguished.

Towards the ends of their lives, stars much larger than our Sun throw off a different type of structure. Those starting with over thirty solar masses evolve to shed large amounts of their hydrogen-rich outer layers, later lit by short-wavelength radiation produced by the hot and still-massive central star before its supernova denouement. The Crescent Nebula in central Cygnus, NGC 888, is such a structure, and its intricate

All images courtesy of NASA, Hubble, and Wikipedia.
Recent ultraviolet imaging by Alan Whitman's using an O-III filter. Inspired within its outer shell using and detail were unveiled glorious amount of nebulosity supernova remnant in a few Large Magellanic Cloud what may be in store for the northeast, NGC 6960 and to its southwest and. The two arc-shaped regions enhanced understanding of Veil Nebula print, seeing even his faintest, imagined wisps throughout the region. A much fainter supernova remnant, Simeis 147 in Taurus, is not unlike the planetary Kronberger 61 in shape or detail, though on a completely different scale. Pieces of the former are visible in my large reflectors, but even though the planetary's central star is visible, its nebulosity has twice defied visual recovery. Though not strictly a "ring," the tidal streams recently found surrounding some large spiral galaxies are echoes of entwinement between galaxies of unequal mass. The dwarf galaxies that orbit and are frequently ingested by their larger parent galaxies leave traces of their history in the form of stellar streams with gas and dust spread along their orbital paths. The Sloan Digital Sky Survey has revealed stars orbiting and within our own galaxy that are part of some of these tidal structures, similar to the Magellanic Stream of the eponymous Clouds. In a few cases, such as NGC 5907 in Draco, deep imaging has revealed their presence, and certain instances, newly born "tidal dwarf galaxies" created from this gravitational intercourse can be viewed, as in the Antennae and Stephan's Quintet. NGC 474, a galaxy in southern Pisces with concentric shells reverberating from a recent gravitational encounter, presents an interesting case. It is likely associated with either NGC 470 or 467 to its west. A 1999 study found that NGC 470, the adjacent spiral, has a redshift similar to that of NGC 474. In viewing deep images of NGC 474 and 467 further to its west, one is struck by their similar colors and disturbed morphology, despite different redshifts in the RC3. NGC 470 is much bluer, has intact spiral arms, and is relatively undisturbed compared to NGC 474. These galaxies can all be seen quite easily in 6- to 8-inch scopes, but the circinate "shells" that define this resonating galactic bell epoch require a much larger instrument under very dark skies.

Hoag's Object, PGC 54559 in Serpens, was discovered in 1950 by Arthur Hoag on a Palomar Sky Survey Schmidt plate, which he described as a circular, 17-arcsecond object of uncertain nature, though he correctly speculated that it could be a peculiar galaxy. Found by later study to be the most perfect example of a face-on ring galaxy, its inner portion is dominated by older yellow and red stars, and the outer portion is rife with dust, nebulae, and the young, blue stars of recent formation. Ring galaxies may represent the intermediate case of mass inequality in interactions, where a perpendicular, central collision by a medium-mass galaxy with a larger spiral creates shock waves and a ring of new star formation, with the original stars collapsing gravitationally back into the core. In the case of Hoag's galaxy, at the eyepiece, its two portions can be differentiated, but the fortuitously placed "mini-Hoag" ring galaxy in the gap at the one o'clock position on the Hubble Space Telescope's spectacular image remains an elusive target.

The Cartwheel Galaxy, ESO 350-40 in central Sculptor, is a striking ring galaxy, with "spokes" radiating from its central area toward the outer edge. Several smaller galaxies lurk nearby, one of which is the likely interloper disrupting the structure of what was once a classic spiral. I have seen the Cartwheel several times but its detailed structure has defied observation. Its declination inclines a trip to Southern Hemisphere skies to visit Aunt Neal and claim its bespoken treasure.

The first complete gravitationally lensed "Einstein Ring" seen in the visual spectrum was the prosaically named B1938+666. It was first found in radio waves by the MERLIN array and then imaged by the Hubble Space Telescope in 1998. Named after Albert Einstein, who in 1912 first predicted that gravity could bend light, this lensing was confirmed to spectacular acclaim in 1919 during the total solar eclipse over Principe, an island near the coast of Africa. The first person to suggest in the physics literature this phenomenon could result in a ring was Orest Khvolsion, in 1924. I was able to view an extremely faint, stellar object at the position of B1938+666 using my 32-inch f/4 reflector at 929x at the September 2006 Okie–Tex Star Party. It sat between two 16.5- to 17th magnitude stars, each about 15 arcseconds away to the southeast and northwest.

In 2008, Hubble was again used to find the first "Double Einstein Ring," wherein the optical alignment of three

The tiny remnant of the GALEX satellite has enhanced understanding of some of its central areas. The two arc-shaped regions to its southwest and northeast, NGC 6960 and 6992, respectively, hint at what may be in store for the Large Magellanic Cloud supernova remnant in a few tens of thousands of years. A glorious amount of nebulosity and detail were unveiled within its outer shell using my 32-inch from a dark site using an O-III filter. Inspired by Alan Whitman's September 2011 Sky & Telescope article, I was able to recover all the nebulosity seen in Michael Mayda's Veil Nebula print, seeing even his faintest, imagined wisps throughout the region. A much fainter supernova remnant, Simeis 147 in Taurus, is not unlike the planetary Kronberger 61 in shape or detail, though on a completely different scale. Pieces of the former are visible in my large reflectors, but even though the planetary's central star is visible, its nebulosity has twice defied visual recovery. Though not strictly a "ring," the tidal streams recently found surrounding some large spiral galaxies are echoes of entwinement between galaxies of unequal mass. The dwarf galaxies that orbit and are frequently ingested by their larger parent galaxies leave traces of their history in the form of stellar streams with gas and dust spread along their orbital paths. The Sloan Digital Sky Survey has revealed stars orbiting and within our own galaxy that are part of some of these tidal structures, similar to the Magellanic Stream of the eponymous Clouds. In a few cases, such as NGC 5907 in Draco, deep imaging has revealed their presence, and NGC 474, a galaxy in southern Pisces with concentric shells reverberating from a recent gravitational encounter, presents an interesting case. It is likely associated with either NGC 470 or 467 to its west. A 1999 study found that NGC 470, the adjacent spiral, has a redshift similar to that of NGC 474. In viewing deep images of NGC 474 and 467 further to its west, one is struck by their similar colors and disturbed morphology, despite different redshifts in the RC3. NGC 470 is much bluer, has intact spiral arms, and is relatively undisturbed compared to NGC 474. These galaxies can all be seen quite easily in 6- to 8-inch scopes, but the circinate “shells” that define this resonating galactic bell epoch require a much larger instrument under very dark skies.

Hoag's Object, PGC 54559 in Serpens, was discovered in 1950 by Arthur Hoag on a Palomar Sky Survey Schmidt plate, which he described as a circular, 17-arcsecond object of uncertain nature, though he correctly speculated that it could be a peculiar galaxy. Found by later study to be the most perfect example of a face-on ring galaxy, its inner portion is dominated by older yellow and red stars, and the outer portion is rife with dust, nebulae, and the young, blue stars of recent formation. Ring galaxies may represent the intermediate case of mass inequality in interactions, where a perpendicular, central collision by a medium-mass galaxy with a larger spiral creates shock waves and a ring of new star formation, with the original stars collapsing gravitationally back into the core. In the case of Hoag's galaxy, at the eyepiece, its two portions can be differentiated, but the fortuitously placed “mini-Hoag” ring galaxy in the gap at the one o'clock position on the Hubble Space Telescope's spectacular image remains an elusive target.

The Cartwheel Galaxy, ESO 350-40 in central Sculptor, is a striking ring galaxy, with "spokes" radiating from its central area toward the outer edge. Several smaller galaxies lurk nearby, one of which is the likely interloper disrupting the structure of what was once a classic spiral. I have seen the Cartwheel several times but its detailed structure has defied observation. Its declination inclines a trip to Southern Hemisphere skies to visit Aunt Neal and claim its bespoken treasure.

The first complete gravitationally lensed "Einstein Ring" seen in the visual spectrum was the prosaically named B1938+666. It was first found in radio waves by the MERLIN array and then imaged by the Hubble Space Telescope in 1998. Named after Albert Einstein, who in 1912 first predicted that gravity could bend light, this lensing was confirmed to spectacular acclaim in 1919 during the total solar eclipse over Principe, an island near the coast of Africa. The first person to suggest in the physics literature this phenomenon could result in a ring was Orest Khvolsion, in 1924. I was able to view an extremely faint, stellar object at the position of B1938+666 using my 32-inch f/4 reflector at 929x at the September 2006 Okie–Tex Star Party. It sat between two 16.5- to 17th magnitude stars, each about 15 arcseconds away to the southeast and northwest.

In 2008, Hubble was again used to find the first "Double Einstein Ring," wherein the optical alignment of three
billions of light-years away, respectively. The middle galaxy is lensed into a nearly complete arc, 310 degrees long, with the distant galaxy split into three circumferential arcs, one longer and two shorter, fainter than the inner ring. On the POSS II red plate this system appeared stellar, with a hint on the POSS II blue plate of a ring arc. I was able to spot this 18.6-magnitude object from my home in April 2011, and in the eyepiece of my 32-inch reflector it appeared stellar.

For the last fifteen years I have been searching the professional literature in regard to gravitationally lensed arcs possibly visible in my equipment. Almost all the arcs (except AGC 2667, below) noted in professional instruments, and nicely presented in journal images, were not visible at all on the POSS I or II plates. Then in 2010 along came RCS2 032727-132623, a galaxy cluster studied by Eva Wyys of the University of Chicago, showing a very blue, 90-degree arc that appeared to me to be the brightest arc yet discovered. It is invisible on the POSS II red plate. But, Cheshire-cat-like, its inverted smile appears clearly when examining the blue companion image. Though rather low in my Minnesota sky, I still felt I had a shot from my driveway, as I rolled my 32-inch behemoth down the rippled tar, sacrificing collimation to optimize culmination. On each of three cold mornings I spent nearly an hour at the eyepiece, hand guiding to no avail, as this prey eluded all tricks to view it. My friend Jimi Lowrey had a similar result from the more southerly and temperate climes of West Texas, even using his 48-inch telescope at over a mile of elevation. Its invisibility must stem from its wavelength. I have a plan to recruit a colleague, post cataract surgery, whose implants allow perception well into the deep blue, as I noted during the transit of Venus when he was the only one seeing well through the calcium solar instrument. Though not a complete Einstein Ring, the bright arc surrounding AGC 2667 in northern Sculptor is one of the brightest lensed structures in the sky. It is bluer than the cluster galaxies of Abell 2667, but has elements of red and yellow and, unlike the RCS2 object, appears on both the red and blue POSS II plates. Though distinctly brighter in the blue, this wavelength difference is what I think made the arc visible to me after ninety minutes of searching with my 32-inch scope at the 2008 Okie-Tex Star Party. Einstein was often spectacularly right, but in this case we recall his prediction in regard to the visibility of gravitationally lensed light: “of course, there is no hope of observing this phenomenon directly.” As did the mountains of Mordor, the sky forges rings from powerful forces offering uniriting adventure and rounded memory.

...Forge of darkness O’pen the deep

Set Some New Observing Goals This Year

By Mike Hotka

Years ago, I learned of an amateur’s goal of observing 5,000 unique objects in the Universe. I thought this was a commendable goal, so I adopted it for myself. To date, I have observed 3,432 unique objects towards my goal.

This single goal drives my thirst to find new objects each time I go out observing. I never tire of old Messier favorites, but am always looking for objects off the beaten path. While completing 37 of the Astronomical League’s observing programs, I was provided with list after list of objects I had never seen. There are generally more objects on an observing program list to observe than are required for the certificate. After looking at the required number for the certificate, I will continue to observe the remaining objects on the list. All these new objects contribute to my 5000 unique objects observed goal.

When looking for observing programs to try, I look for programs that interest me. Recently, two new programs were added that caught my eye: the Hydrogen Alpha Small Solar Observing Program and the Bright Nebulae Observing Program. Hydrogen alpha solar observing was something I had wanted to do for years. When I found this program, I started looking for a H-alpha solar telescope. I really did not want to spend almost $500 for a Coronado PST telescope. I made a couple of inquiries and learned my local astronomy club had a PST I could check out. I was then ready to complete this program. I have always liked looking at bright nebulae. The Bright Nebulae Observing Program gave me the push I needed to start observing more of these beautiful objects. I used my 8-inch f/6 Newtonian for this program. With eyepieces giving magnifications of 51x, 81x, and 122x, along with my ultra-high contrast and O-III filters, I was able to complete the required 100 observations. I found the objects on the list easy to find and observe.

When not working on observing programs, I observe double stars on Dave Mitsky’s Double Star list. I am also looking at all the Herschel objects that William Herschel looked at. After reading the article “The Herschel Project” by Robert Naeye in the June 2012 Sky & Telescope magazine, I was hooked on observing these objects. I have read books about William and Caroline Herschel, which adds to my viewing enjoyment. All these Herschel objects will add to my 5,000 unique objects observed goal.

I really appreciate the Astronomical League and all that it does for us amateur astronomers. Their observing programs are a great resource, for not only do they take you off the beaten Messier path, but you learn new observing techniques with every program you complete. These techniques allow you to see fainter objects with a telescope, introduce you useful astronomical resources that you can use in the field, teach you to study the object you just found in the eyepiece, and have you observe a breadth of different kinds of objects, just to name a few.

Set your first 2014 goal to complete the Messier Observing Program. Once you complete it, you will have a good command of the sky and be able to navigate amongst the constellations. While looking at the Messier objects, note which ones you like the best. Your next goal should be to see more of these kinds of objects. The League has an observing program that will help you achieve this next goal. For example, if you like galaxies, choose the Herschel 400 and Herschel II Programs. Similar observing programs exist for every other kind of object in the Messier list: bright nebulae, planetary nebulae, globular clusters, and open clusters.

Start out 2014 by setting some personal observing goals. Then look to the Astronomical League’s observing programs to help you achieve these goals.

Mike Hotka has been an Astronomical League member since 1986. He has completed 37 of the League’s observing programs. His website, mihotka.com, contains a wealth of observing information. Contact Mike at astroleague.org/roster/contact/383.
The Astronomical League's observing programs—formerly called observing clubs—have been one of the foremost and obvious benefits of being a League member. They have been in place for as long as I have known the League, and have been an enormous influence on my personal involvement in astronomy. What is it about observing programs that makes them so attractive and beneficial?

The answer may vary from one person to another because these programs are varied and may mean different things to different people. Do the words “challenging,” “inspiring,” “learning,” “teaching,” “sharing,” and “rewarding” come to mind? They do for me. Perhaps I should take a step back in time and tell my story.

I got my start in astronomy in middle school. My seventh-grade teacher invited students out to the playground behind the school to look at the night sky through a 4.5-inch Edmund Scientific f/8 Newtonian telescope. I’ll bet that you still remember where you were the first time you saw Saturn. Well, that’s where I was, right between the monkey bars and the merry-go-round. It was awesome.

Every time I do outreach, I get to relive that moment when kids from seven to seventy say “wow!” at the eyepiece while looking at that same sight. If you feel the same way, the Outreach Program is just the thing for you. All you have to do is build up your hours and log your events to qualify for the Outreach Award. Do that more often and there are higher levels to attain as well. Nothing is as rewarding as giving and sharing with others. Maybe that’s why the Outreach Program is one of the most popular.

A few years later, at Scout camp, I was lucky enough to have a counselor who knew enough about astronomy to show me some of the constellations as part of the astronomy merit badge. That was the next big step, and the first one along a journey. Knowing the constellations is like finding your way first around the neighborhood, then along all the streets and roads in town. It’s like that in the sky. Learning the constellations allows one to find things. For instance, if you know of something interesting in Cygnus, you can identify Cygnus and start looking there.

One way to get proficient at finding your way around the sky is to sketch the stars, connecting the major ones with lines. There’s a program for that, too. It’s the Constellation Hunter Program, and all you have to do is sketch the northern or southern set of constellations. It doesn’t matter if you’re an art student or if your art is more on the kindergarten level; just do it, as they say.

Practice, Practice, Practice
Here’s one more thing about that. When you look back at your first few drawings, you may be amazed to find that you’ve gotten better at it. After completing a fair number of the observing programs, whether it’s sketching, describing, measuring, listing, estimating, or finding, you get better. All that practice improves your ability, and that’s one of the benefits of participating in the programs.

As an example, a group of folks in my club traveled to an excellent observing site one night and we set up our telescopes. We were hunting for galaxies that night and one friend shared that he’d found three in the same field of view. I took a look, saw that there were more, and pointed them out. My friend learned on the spot and improved his observing skills.

Core Observing Programs
Which observing programs should you do? Whichever ones you like. There are a few, though, that have historically taken center stage. There are five core programs that are required for the Master Observer Program.

Personal experience has taught me that the Messier Program is a great one to begin with. Messier’s list of things not to be mistaken for comets turns out to be a smorgasbord of supernal delights that are easily observed. With practice, the Messier objects make a great menu of things to show others during outreach events. To complete the program, you only need to record the information involved with each of your observations. Many other programs have the same requirements. Want a challenge? See if you can observe most or all of them in one night in a “Messier marathon.” I bagged over 100, and I hand it to those who have found all 110. It really is a marathon!

Furthermore, there is the Deep-Sky Binocular Program. It is good to be able to use binoculars and find these delights. The Lunar Program is a great one to get to know the Moon. It’s amazing that here is a celestial body so nearby that we can study its surface features in detail.

The last two of the core five take more persistence. The Double Stars Program requires good searching techniques, and, in some cases, pretty keen eyesight. The last is the real bear: the Herschel 400 Program has the longest list—400 faint fuzzies to find. You’ve gotta have a lot of perseverance to make it through this one!

Most of these have follow-up programs too. There is the Lunar II. There is the Herschel II (I’ve heard it said that you’ve got to be a glutton for punishment for search for its 400 faint objects). Did you like the Messier Program? Follow that with the Caldwell and Binocular Messier. Or, if you liked a particular type of Messier object, you can look for many more examples of each. Choose globular clusters, open clusters, bright nebulae, or planetary nebulae—there’s a program for each. If you like galaxies, there are even more programs, including Flat Galaxies, Local Galaxies, Galaxy Groups and Clusters, and Arp Peculiar Galaxies.

If you didn’t get enough hunting to suit your fancy, take a trip to the Southern Hemisphere and go for more. There are several southern programs. Perhaps you prefer to find new and changing things. If so, you can watch for comets, meteors, near-Earth objects, occultations, variable stars, asteroids, or sunspots. There is a program for each, and some offer the possibility of doing real astronomical science.

It’s obvious that the Astronomical League has devoted a great deal of its resources to offer observing programs that challenge amateur astronomers and improve their observing skills. No matter whether it’s the thrill of the hunt, the delight of discovery, or the love of learning, we hope that you will take advantage of the opportunity to get involved in observing programs.

Clear skies! ☪️
2014 NATIONAL YOUNG ASTRONOMER AWARDS

By John Jardine Goss, Astronomical League Vice President

The Astronomical League is pleased to announce the top finishers for the 2014 National Young Astronomer Award program. Thousands of high school students from across the country were eligible to compete for this year’s award. Our national judges, all noted astronomers, were Dr. David Hans Hough, professor at Trinity University, San Antonio, Texas; Dr. Robert Stencel, professor at the University of Denver, Colorado; and Dr. Kaitlin Kratter, assistant professor at the University of Arizona in Tucson. We appreciate their valuable contributions to this program.

All top finishers receive a complimentary membership in the International Dark-Sky Association. The first- and second-place finishers each receive an all-expenses-paid trip to the 2014 ALCon, “The Stars are Bright, Deep in the Heart of Texas,” in San Antonio. The League would also like to recognize Explore Scientific, the sponsor of the program, for generously donating one of its fine telescopes to the first place finisher.

First Place: Pranav Sivakumar
A freshman at Barrington High School in Barrington, Illinois, Pranav Sivakumar is awarded first place in the 2014 NYAA competition for his work, “Morphological Identification of Wide-Separation Gravitationally Lensed Quasars.”

Well over 300,000 quasars are known, and some of them are gravitationally lensed by intervening galaxies. This project developed a technique for identifying gravitationally lensed quasars.

The project’s hypothesis was “if multiple objects in an SDSS image both photometric and spectral criteria, then these objects are high-probability gravitationally lensed quasar candidates because they are virtual images of the same quasar.” Pranav developed an algorithm that examined the class, spectral color, and redshift of each candidate quasar, then, using an iterative and statistical process, determined whether they were duplicates of other, neighboring quasars. It was tested on a set of known lensed quasars to determine the procedure’s validity.

Pranav’s conclusion: “A comparison of the lensed quasar candidates identified by the present research and the lensed quasars reported in the literature leads to the conclusion that the original hypothesis of this project is well supported.” He also found that the morphological approach used in his research is effective in identifying lensed quasar candidates.

Second place: Katie Shen
Katie Shen, a junior at the Loudoun Academy of Science in Sterling, Virginia, is the 2014 NYAA second-place finisher. In her “Census of H-II Regions in SDSS,” she created a catalog of H-II regions that are misclassified in the Sloan Digital Sky Survey.

Using SQL (structured query language), Katie obtained the necessary candidate H-II data: color images, spectral lines, and X-ray emissions. These allow her to eliminate galactic nuclei using information provided by the ROSAT X-ray survey. In future work, Katie hopes to filter out objects with characteristics similar to those of H-II regions, such as planetary nebulae.

10, 25, and 50 Years of the Astronomical League’s Newsletter
By Mike Stewart

June 1964—N.M.I.M.T. Announces New Project
The observatory of the New Mexico Institute of Mining and Technology may get an image-orthicon (closed circuit TV) if the College Astronomy Club is able to raise the funds for the materials involved.

Richard Estock, president of the club, said that the spring field trip of the organization Saturday, May 2, to the Organ Mountain Laboratory near Las Cruces had as one of its purposes the study of details of the construction of the image-orthicon at the Organ installation.

The Organ station has a TV camera placed against the eyepiece of a 12-inch f/16 Cassegrain telescope to photograph the activity in the sky. By employing this method, the Organ station has matched their instrument against a 40-inch telescope.

Estock said that if the club can get the funds, it will sponsor and build a similar installation at New Mexico Tech.

May 1989—The Night the Sky Caught Fire
On 12 March [1989] I was flying from West Palm to Atlanta between 9:25 and 11:04 p.m. at flight level 41,000 feet, when a Piedmont pilot said on the radio, “Center, there’s some red stuff up here in the northwest.” I responded: “Those are the northern lights.” They were mostly red when viewed over Orlando, but I saw it all the way into Atlanta. Some broken cloud cover was over the city, but a friend of mine saw it from the ground in Kennesaw.

The next night, flying from New York to Portland, Maine, I took off at 8:04 p.m. to arrive in Portland at 9:10 p.m. Heading northwesterly at 37,000 feet, I saw sheets of green as bright as you could imagine, and on either side it faded to red, and stretched over 180 degrees around the horizon. I had seen the aurora before in Iceland, but it was nothing like here. The 757 has lots of viewing area in the cockpit, and I could see behind overhead as it came down in sheets like a dome from the zenith, following the magnetic field.

June 2004—In Search of the Perfect Club
A retreat for astronomy club officers, sponsored by the Central Appalachian Astronomy Club and the Mid East Region of the Astronomical League, was held at the National Radio Astronomy Observatory in Green Bank, WV, March 19–21, 2004. Interested people were brought together for sharing methods that
League Seeks Archival Material
The Astronomical League seeks donations of correspondence, meeting minutes, conference proceedings, and other printed material to expand our archives. Photographs are also welcome, particularly those that identify date, place, and the individuals or activity depicted.

In particular, the League would like to find original copies of four newsletter issues. In the past year, the League, through the very generous assistance and technical expertise of Michael Radencich, has digitized the newsletter. Unfortunately, our collection does not include four issues: March–April 1958, May–June 1958, November–December 1961, and November 1980. If you have these issues, the League would appreciate their donation or loan so that we may complete our physical and digital sets.

If you would like to donate archival materials, please contact the League historian, Mike Stewart, AL_Historian@kc.rr.com, or the national office, leagueoffice@astroleague.org.

Special offer for Astronomical League Members and Clubs:
Guy Ottewell’s
ASTRONOMICAL CALENDAR 2014
84 atlas-sized pages (11x15 inches) with plenty of illustrations. Re-organized for this 41st edition, with even richer information about each month (Sky Domes, month lore, moving patterns...). Still the multi-page sections on Eclipses, Meteors, Asteroids, Comets...

In recognition of Astronomy Day, TIME Magazine posted in their photo gallery astrophotographs imaged by Astronomical League members. View them at http://ti.me/1jJm0tp

Special price for Astronomical League members: $19.95 and free shipping (US addresses)
Place your order: visit www.UniversalWorkshop.com/clubs or call 1-800-533-5083
Order the Second Edition of The Astronomical Companion at the same time for special combined price of $39.95 and free shipping

HEART OF AMERICA STAR PARTY
October 23-26, 2014
Featured speaker:
Dr. David Levy, Comet Hunter and Author
• On the Dark Sky Site developed for and by amateur astronomers
• Located on 40 rural acres for excellent observing
• Services, amenities, and motels located nearby in Butler, Missouri, including Bates County Museum & Battle of Mine Creek Museum
• Wide area with plenty of room for tents, trailers, and RVs
• Power hook-ups by lottery; then first come, get first choices
• Portapotties & showers on site; bring your own drinking water
• 75 miles south of Kansas City away from city lights
• Nearly 6.7 limiting magnitude (based on SQM-L averages)

In recognition of Astronomy Day, TIME Magazine posted in their photo gallery astrophotographs imaged by Astronomical League members. View them at http://ti.me/1jJm0tp

For details: www.hoasp.org
or, Star Party Chair, Joe Wright
jos.wright@yahoo.com
See website for pre-registration

Activities! Fun! Food! Speakers! Prizes! Make new friends!

Presented by the Astronomical Society of Kansas City

Part of the zodiacal chart for one of the months

8

Clubs are not perpetual motion machines; without constant input, they can slow down and lose member and community support. One specific revitalization program that resulted in substantial member growth was chronicled. In another session, the group arrived at over fifteen ways to raise needed funds and another fifteen to promote their clubs to the public. The importance of young people to our hobby was not neglected.

With all the ideas and suggestions put forth over the weekend, it was no surprise that people left Sunday knowing that their clubs can achieve their goals, fulfill the promises of their charters, and be successful.

In recognition of Astronomy Day, TIME Magazine posted in their photo gallery astrophotographs imaged by Astronomical League members. View them at http://ti.me/1jJm0tp
A MEMBER BENEFIT FROM
McDONALD OBSERVATORY

StarDate, the bi-monthly publication of the nonprofit
McDonald Observatory, is offering our members a 25% discount. Their magazine provides easy-to-read articles
on the latest astronomy research, skywatching, the
history of astronomy, and many other topics. StarDate
also offers star charts for each month, a sky calendar,
and Merlin’s answers to reader questions. The discounted
rate is $19.50 for members in the
continental USA, $22 for Canada, and
$30 to other foreign countries.
Members-at-Large should send their
check (payable to the Astro League)
to Astronomical League Office,
9201 Ward Parkway, Suite 100,
Kansas City, MO 64114. For
members Societies, the appointed person in each
club should gather the subscriptions, and send the
appropriate amount to StarDate Magazine, c/o Paul
Previte, 1 University Station A2100, Austin, TX 78712.
You can read more about StarDate at www.stardate.org.

If you have any questions, please contact the League’s
National Office at leagueoffice@astroleague.org

McDonald Observatory

The League Book Service
is here for you!

Are you searching for that special astron-
omy book but don’t know where to
start? Let the Astronomical League’s Book
Service fill your request! With its 10%
discount and free shipping, how could you
not do otherwise?

This is the perfect place for members to
go when looking for books currently in
print about astronomy, cosmology,
mathematics, and physics. Titles can be
ordered from many well-known astronomy
book publishers such as Sky Publishing,
Cambridge, Oxford, Willman-Bell, Springer-
Verlag and others.

Moreover, items available through the
Book Service are not limited only to books.
Posters, charts, and atlases are also
available.

Ordering is simple enough. Just provide
the name of the item, author, publisher (if
known), the retail price and the shipping
address. Be sure to include a check or
money order payable to Astronomical
League Book Service for the retail price
minus 10%. Shipping and handling are
free. Sorry, credit cards are not accepted.

Mail your requests to:

Star ’N Space Books, 324 W. Gurley
St., Prescott, AZ 86301

You should receive your order within two
to three weeks.

This benefit is made possible by the
efforts of League volunteer Marilyn Unruh,
proprietor of Star ’N Space Books. She is
also an avid amateur astronomer. Like
many of the League’s members, she desires
to help others enjoy our fascinating avocation.

Marilyn notes, “This service allows me to give
back to the astronomical community by doing
something that I love to do – deal in books!”

For members who are looking to add to their
library, the Book Service is definitely the place to go!
Observing under Light-Polluted Skies
When many people think of the Astronomical League’s observing programs, the Messier, the Double Star, and the Herschel Observing Programs come to their minds. The objects included in those popular lists generally require dark skies to locate and to fully appreciate. This is great for members living away from light-polluted skies, but what about those living under the pallor of bright sky glow?

Does the Astronomical League have observing clubs suitable for them, lists that urban and suburban observers can not only attempt, but enjoy completing?

The answer is a resounding “yes!” Nine programs present their own challenges. Some are directed at new observers, while others are geared toward the more advanced.

Two clubs have strictly daytime activities. The Analemma Program is not a typical observing program: only the Sun is followed, and no telescopic observations are needed. It educates amateurs about Earth’s annual orbit around our parent star. The other club, the Sunspotters Program, requires proper filters to examine sunspots and other solar features.

Just because the Moon is the brightest evening object and is visible from just about any place doesn’t mean it is easy to study. The Lunar and Lunar II Programs offer challenges for observers at any experience level.

Many of the activities in the Dark-Sky Advocate and Outreach Programs go beyond telescopic observations—both programs can directly benefit your community.

The Galileo, Solar System Observer, and Urban Observing Programs all require either binoculars or telescopes. However, they don’t generally require dark skies. In fact, the Urban Program can’t be completed where the Milky Way is visible.

Want to observe in the city? No problem! The Astronomical League has you covered.
Editor's Note: Congratulations to all these outstanding astronomical observers! All awards, except the Herschel 400, require current Astronomical League membership for eligibility. If you have questions about an award, please contact the corresponding Observing Program chair. Their contact information can be found on the Observing Program website at www.astroleague.org/observing. If further assistance is required please contact either of the national Observing Program coordinators.

Asterism Award
No. 11, Bob Scott, Island County Astronomical Society

Binocular Double Star Award
No. 20, Kevin Mayock, Whatcom Association of Celestial Observers; No. 79-V, Vincent R. Scheetz, Delaware Valley Amateur Astronomers

Binocular Messier Award
No. 1003, Doug Lively, Raleigh Astronomy Club; No. 1004, Mary Jimenez, Northern Virginia Astronomy Club; No. 1005, Thomas H. Koczko, Amateur Observers’ Society of New York and Astronomical Society of Long Island; No. 1006, Paul Lewis, Member-at-Large; No. 1007, Stephen Tzikas, Northern Virginia Astronomy Club; No. 1008, Nora Jean Chetnik, Member-at-Large

Bright Nebula Award
No. 3, Brad Young, Astronomy Club of Tulsa; No. 4, Al Lamperti, Delaware Valley Amateur Astronomers

Caldwell Award
No. 206, Denise Terpstra, Member-at-Large

Carbon Star Award
No. 47, Daniel Otte, Member-at-Large; No. 48, Wayne E. Frey, Central Florida Astronomical Society

Coet Award
No. 72, Frank Smith, Silver, Member-at-Large; No. 73, Jim Kvasnicka, Silver, Prairie Astronomy Club

Constellation Hunter Award
No. 139, Fred Gassett, Kansas Astronomical Society

Deep-Sky Binocular Award
No. 352, Kevin Nasal, Neville Public Museum Astronomical Society; No. 353, Karlis Lubkans, Member-at-Large

Double Star Award
No. 508, Robert Morton, Stillwater Stargazers; No. 509, Rex L. Kindell, Stillwater Stargazers; No. 510, Ken Pryor, Oklahoma City Astronomy Club; No. 511, Nina Chevalier, San Antonio League of Sidewalk Astronomers; No. 512, Mark Prouty, Olympic Astronomical Society; No. 513, Stephen L. Snider, Albuquerque Astronomical Society; No. 514, Kevin Johnson, Minnesota Astronomical Society; No. 515, Mathew J. Wedel, Pomona Valley Amateur Astronomers; No. 516, Les Rudy, Charter Member-at-Large; No. 517, Daniel Otte, Member-at-Large; No. 518, Bill Smith, Member-at-Large; No. 519, Emory Horvath, Member-at-Large; No. 520, Nick Anderson, Back Bay Amateur Astronomers; No. 521, Pamela Lubkans, Member-at-Large; No. 522, Stephan A. Tzikas, Northern Virginia Astronomy Club; No. 523, Mark Simonson, Everett Astronomical Society; No. 524, Yanzhe Liu, TAC-AL; No. 525, Mike Fowler, Atlanta Astronomy Club; No. 526, Jake Hairell, Minnesota Astronomical Society; No. 527, Douglas Wiese, High Desert Astronomical Society

Galaxy Groups and Clusters Award
No. 35-DA, John Kutynev, Astronomical Society of Las Cruces; No. 36-DA, Dick Francini, Neville Public Museum Astronomical Society

Global Cluster Award
No. 251, Patrick R. Rader, West Kentucky Amateur Astronomers; No. 252, Fred Gassett, Kansas Astronomical Society

Herschel 400 Award

Herschel II Award
No. 87-M, Ralph Marple, Northern Virginia Astronomy Club

Hydrogen Alpha Solar Award

Lunar Award
No. 853, J.J. Bjordahl, Rose City Astronomers; No. 854, Andrea L. McCann, Member-at-Large; No. 855, Greg Moore, Member-at-Large; No. 856, Darrel Roberts, Jr., Central Arkansas Astronomical Society; No. 857, Rich Tennis, Peoria Astronomical Society; No. 858, Stephen Jones, Houston Astronomical Society; No. 859, Jean Napp, Iowa County Astronomers; No. 860, Jim Kaminski, Member-at-Large; No. 861, Nora Jean Chetnik, Member-at-Large; No. 862, Jeffery Rebitezke, Texas Astronomical Society; No. 863, Kieran Rebitezke-Brown, Texas Astronomical Society

Lunar II Award
No. 56, Thomas H. Koczko, Amateur Observers’ Society of New York and Astronomical Society of Long Island

Master Observer Award
No. 142, Chris Lamer, Kansas Astronomical Observers; No. 143, Nick Anderson, Back Bay Amateur Astronomers; No. 144, Gil Raineault, Member-at-Large; No. 145, Terry N. Trees, Amateur Astronomers Association of Pittsburgh; No. 146, Mark Johnston, Austin Astronomical Society; No. 147, Denise Terpstra, Member-at-Large; No. 148, Mark L. Simonson, Everett Astronomical Society; No. 149, Steve Boerner, Astronomical Society of Eastern Missouri; No. 150, Larry E. Madison, Member-at-Large; No. 151, Melissa Adams, Member-at-Large; No. 152, Melinda Hopper, Astronomical Society of Kansas City; No. 152, Nelson Walker, Member-at-Large

Messier Award
No. 2656, Jeremy Naethe, Member-at-Large; No. 2657, Tom Burleson, Jr., Honorary, Von Braun Astronomical Society; No. 2658, Paul Sanders, Honorary, Kansas Astronomical Observers; No. 2659, Stephen Tzikas, Honorary, Northern Virginia Astronomy Club; No. 2660, Billy Cheek, Regular, Texas Astronomical Society of Dallas; No. 2661, Doug Oines, Honorary, Minnesota Astronomical Society

Meteor Award
No. 166, Thomas P. Mozingo, 18 hours, Barnard Astronomical Society; No. 167, Dick Francini, 6 hours, Valentine Public Museum Astronomical Society

Outreach Award
No. 247-M, Mike Stewart, Astronomical Society of Kansas City; No. 269-M, Dwight Harness, Flint River Astronomy Club; No. 467-M, Steven Bellavia, Amateur Observers’ Society of New York; No. 468-S, Jeremy Naethe, Member-at-Large; No. 507-O, John Whisenhunt, San Antonio League of Sidewalk Astronomers; No. 553-O, Richard Kariohl, San Antonio League of Sidewalk Astronomers; No. 554-O, Erik Erickson, Flint River Astronomy Club; No. 555-O, Steve Artherton, Oklahoma City Astronomy Club; No. 557-O, Karole Barker, Oklahoma City Astronomy Club; No. 558-O, Shane Barker, Oklahoma City Astronomy Club; No. 559-S, Mike Brake, Oklahoma City Astronomy Club; No. 540-O, R. Christian Bruggeman, Oklahoma City Astronomy Club; No. 541-O, Brad Ferguson, Oklahoma City Astronomy Club; No. 542-O, Eileen Grzybowski, Oklahoma City Astronomy Club; No. 543-O, David Huntz, Oklahoma City Astronomy Club; No. 544-M, Ida Huntz, Oklahoma City Astronomy Club; No. 545-S, Mike Madden, Oklahoma City Astronomy Club; No. 546-O, Maurice Massey, Oklahoma City Astronomy Club; No. 547-O, William Murrell, Oklahoma City Astronomy Club; No. 548-O, J.B. Sims, Oklahoma City Astronomy Club; No. 549-O, Chris Taylor, Oklahoma City Astronomy Club; No. 550-O, Gerald Taylor, Oklahoma City Astronomy Club; No. 551-O, Jerry Taylor, Oklahoma City Astronomy Club; No. 552-O, Marilyn Taylor, Oklahoma City Astronomy Club; No. 553-O, Ramona Taylor, Oklahoma City Astronomy Club; No. 554-O, Jeff Thibodeau, Oklahoma City Astronomy Club; No. 555-O, David Winfrey, Oklahoma City Astronomy Club; No. 556-O, Bill Wilburn, Oklahoma City Astronomy Club; No. 557-O, John Hannah, Oklahoma City Astronomy Club; No. 558-O, Donna Prater, Oklahoma City Astronomy Club; No. 559-O, Rob Lentini, Northern Virginia Astronomy Club; No. 560-O, Robert C. Pettengill, Jr., Austin Astronomical Society; No. 561-O, Bob Hoover,
UNIFIED THEORY OF MATTER AND ENERGY

Describes cause of gravity and inertia

Explains why objects shorten and get heavier with speed

Mathematically proves relationships: Gravity and Coulomb Forces

Gives source of radioactivity and evolution

Specifies the “dark matter,” gives a working model of the Universe

Solves the redshift problem

60 pp, 8½ x 11 notebook size, Easy reading, Simple math, $15.95

WALTER KASTNER
947 Parkside Lane, Lancaster, PA 17601
Compiled by John Wagoner.
To have your star party or event listed, please send the details, including dates, sponsors and website, to astrowagon@verizon.net.

May 29–June 1
Wisconsin Observers Weekend
Hartman Creek State Park, Waupaca, Wisconsin
www.new-star.org

May 30–June 1
2014 Bootleg Astronomy Star Party
Green River Conservation Area, Harmon, Illinois
www.bootlegastronomy.com

June 6–8
MSRAL 2014 Convention
Washington University
Saint Louis Science Center, Saint Louis, Missouri
www.slsconline.org/msral2014.html

June 14
44th Annual Apollo Rendezvous
The Boonshoft Museum of Discovery
Dayton, Ohio
www.mvas.org

June 21–28
2014 Grand Canyon Star Party
South Rim: Tucson Amateur Astronomy Association, Arizona
North Rim: Saguaro Astronomy Club of Phoenix, Arizona
www.nps.gov/grca/planyourvisit/grand-canyon-star-party.htm

June 25–29
Rocky Mountain Star Stare 2014
Colorado Springs Astronomical Society, Gardner, Colorado
www.rmss.org

June 25–29
Golden States Star Party
Frosty Acres Ranch, Adin, California
www.goldenstatesstarparty.org

June 25–28
Green Bank Star Quest XI
Green Bank National Radio Observatory, West Virginia
www.greenbankstarquest.org

June 26–29
Cherry Springs Star Party
Cherry Springs State Park, Pennsylvania
www.cherrysprings.org

June 27–28
Craters of the Moon Star Party
Craters of the Moon National Monument, Arco, Idaho
www.ifastro.org

June 27–28
Stars Over Yellowstone
Madison Campground
Yellowstone National Park, Wyoming
www.smasweb.org

July 24–27
July 24–27
Camp Cullom, Frankfort, Indiana
www.indianastars.us/starparty

July 24–27
Stellafane
Breezy Hill, Springfield, Vermont
www.stellafane.org/convention

July 25–26
Stars Over Yellowstone
Madison Campground
Yellowstone National Park, Wyoming
www.smasweb.org

July 27–August 1
Nebraska Star Party
Merritt Reservoir, Valentine, Nebraska
www.nebraskastarparty.org

August 19–24
Oregon Star Party
Ochoco National Forest, Prineville, Oregon
www.oregonstarparty.org

August 21–24
Stars Over Yellowstone
Madison Campground
Yellowstone National Park, Wyoming
www.smasweb.org/?page_id=546

August 21–24
Julian StarFest
Menghini Winery, Julian, California
www.julianstarfest.com

August 21–24
Northwoods StarFest
Hobbys Observatory, Beaver Creek Reserve
Fall Creek, Wisconsin
www.cvastar.org

August 21–25
Iowa Star Party
Whiterock Conservancy, Coon Rapids, Iowa
www.iowastarparty.com

August 22–23
Maine State Star Party
Cobscook Bay State Park, Edmunds, Maine
www.downeastama.com/maine_state_star_party_2014

August 22–23
Connecticut River Valley Astronomers Conjunction
Northfield Mountain Recreation and Environmental Center
Northfield, Massachusetts
www.philharrington.net/astroconjunction

August 22–24
Black Forest Star Party
Cherry Springs State Park, Pennsylvania
www.bsfp.org

August 22–26
Almost Heaven Star Party
Spruce Knob, West Virginia
www.ashp.org

August 27–31
Northern Nights Star Fest
Long Lake Conservation Center, Minnesota
www.mnastro.org/NNSF

August 28–31
South Dakota Star Party
Wally’s Corner, South Dakota
www.sdsp.org

September 18–21
Great Lakes Star Gaze
River Valley RV Park, Gladwin, Michigan
www.greatlakesstargaze.com

September 18–21
Prairie Skies Star Party
Camp Shaw, Bourbonnais, Illinois
www.prairie-skies.org

September 19–21
Idaho Star Party
Bruneau Dunes State Park, Idaho
www.boiseastro.org

September 20–28
Okie–Tex Star Party
Kenton, Oklahoma
www.okie-tex.com

September 24–27
Enchanted Skies Star Party
Socorro, New Mexico
www.enchantedskies.org

September 24–28
Brothers Star Party for Oregon Observatory
Brothers, Oregon
www.mbsp.org

September 25–29
Acadia Night Sky Festival
Acadia National Park, Bar Harbor, Maine
www.acadianightskylife.com

September 26–28
Jersey StarQuest
Hope Conference Center, Hope, New Jersey
www.princetonastronomy.org/sqmainpage

October 17–19
Bays Mountain StarFest
Bays Mountain Park, Kingsport, Tennessee
www.baysmountain.com/astroonomy/astonomy-club/?GTtabs=4

October 18–25
Twin Lakes Star Party
Pennyrile Forest State Park, Kentucky
www.wkaa.net/starparty.php

October 20–25
El dorado Star Party
X-Bar Ranch, Eldorado, Texas
www.eldoradostarparty.org

October 22–26
Deep South Regional Star Gaze
Feliciana Retreat Center, Norwood, Louisiana
www.stargazing.net/dsrg

Astronomical League Membership-at-Large Program
What does the League offer you as Members-at-Large?
• Full voting privileges at AL meetings • A subscription to the Reflector.
• Book Service offering astronomy-related books at a 10 percent discount.
• Optional subscriptions at discounted rates to the following publications:
 Astronomy Magazine $34.00; 2 years $60 • Sky & Telescope Magazine $32.95
 RASC Observers Handbook $26.00 • StarDate $19.50
 (Foreign rates are higher; see website)

To join the Astronomical League as a Member-at-Large, send a check for $30.00, $45.00 foreign, made payable to the Astronomical League, to:
Astronomical League National Office, 9201 Ward Parkway, #100, Kansas City, MO 64114
Phone: 816-333-7759; Email: leagueoffice@astroleague.org
Or join online at: WWW.ASTROLEAGUE.ORG
League Sales are online!

The League’s online store is available at the website, www.astroleague.org. Click on the link for the store on the top right of the home page. The online store includes the latest shopping cart technology and accepts credit cards. Shipping & handling (S&H) is calculated at checkout. Merchandise is also available by mail order, payable by check. Please select your items, add the applicable S&H fee, and mail your order to:

Astronomical League Sales
9201 Ward Parkway, Suite 100
Kansas City, MO 64114

If you have questions about the merchandise, or discounts on bulk orders, please call the League office, 816-DEEP-SKY, or email: leaguesales@astroleague.org.

Trucker Hat
Printed logo, adjustable, navy only; $12, plus $5 S&H

VC600 Baseball Hat
Embroidered logo, adjustable; Colors: royal, maroon, khaki, navy; $16, plus $5 S&H

2100 Baseball Hat
Embroidered logo, adjustable; “Sandwich” bill; Colors: sage w/stone trim, stone w/navy trim, navy w/stone trim; $20, plus $5 S&H

2050 Sportsman Bucket Hat
Embroidered logo, one size; khaki only $22, plus $5 S&H

Astronomical League travel mug
$10: travel mug plus $1.50 S&H

Astronomical League full color cloth patch (three-inch diameter)
$7 plus $1.05 S&H

Astronomical League blue and white cloth patch (three-inch diameter)
$6 plus $1.05 S&H

Astronomical League lapel pin (one-inch diameter)
$8 plus $1.20 S&H

“Guide to the Stars” 16” Planisphere
$21 plus $3.15 S&H

Globular Clusters
$14 plus $2.10 S&H

Galaxy Groups and Clusters
$18 plus $2.70 S&H

Seasonal Star Chart
$25 plus $3.75 S&H

Local Galaxy Group and Galactic Neighborhood
$21 plus $3.15 S&H

Sky Puppies Observing Manual– For the Sky Puppy Observers Club
Regularly $15, Sale price $8 plus $2.25 S&H

Astronomy for Educators Handbook
A Course Planning Guide 5.5” x 7.25”
Regularly $12, Sale price $6 plus $1.80 S&H

Planetary Nebulae
$14 plus $2.10 S&H

Observe the Herschel Objects
$6 plus $1.20 S&H

Math for Amateur Astronomers
$10 plus $1.50 S&H

Universe Sampler
$10 plus $1.50 S&H

The A.L.P.O. Guide to Watching Meteors
$3 plus $1 S&H

Carbon Stars
A guide to the Carbon Star Observing Club
$10 plus $1.50 S&H

“Guide to the Stars” 16” Planisphere
$21 plus $3.15 S&H
This image of the May 20, 2012, annular eclipse was taken from Albuquerque, New Mexico, which was practically on the centerline, hence the beautiful centering of the Sun and Moon. The image is a 1/100 second exposure at ISO 100, taken on a Canon EOS Rebel T2i DSLR through an 8-inch Celestron NexStar SE with a solar filter. Si Simonson is a member of the Fort Worth Astronomical Society in Texas.

The Astronomical League invites its members to submit astrophotography for publishing in the Reflector. When sending photos, please include a brief explanation telling us when and where the photo was taken, your club affiliation, what equipment was used, and any computer processing that was involved.